#region License Information
/* HeuristicLab
* Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.DataAnalysis;
namespace HeuristicLab.GP.StructureIdentification.ConditionalEvaluation {
public class ConditionalSimpleEvaluator : GPEvaluatorBase {
public ConditionalSimpleEvaluator()
: base() {
AddVariableInfo(new VariableInfo("MaxTimeOffset", "Maximal time offset for all feature", typeof(IntData), VariableKind.In));
AddVariableInfo(new VariableInfo("MinTimeOffset", "Minimal time offset for all feature", typeof(IntData), VariableKind.In));
AddVariableInfo(new VariableInfo("ConditionVariable", "Variable index which indicates if the row should be evaluated (0 means do not evaluate, != 0 evaluate)", typeof(IntData), VariableKind.In));
AddVariableInfo(new VariableInfo("Values", "The values of the target variable as predicted by the model and the original value of the target variable", typeof(ItemList), VariableKind.New | VariableKind.Out));
}
public override void Evaluate(IScope scope, ITreeEvaluator evaluator, Dataset dataset, int targetVariable, int start, int end, bool updateTargetValues) {
ItemList values = GetVariableValue("Values", scope, false, false);
if (values == null) {
values = new ItemList();
IVariableInfo info = GetVariableInfo("Values");
if (info.Local)
AddVariable(new HeuristicLab.Core.Variable(info.ActualName, values));
else
scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName(info.FormalName), values));
}
values.Clear();
int maxTimeOffset = GetVariableValue("MaxTimeOffset", scope, true).Data;
int minTimeOffset = GetVariableValue("MinTimeOffset", scope, true).Data;
int conditionVariable = GetVariableValue("ConditionVariable", scope, true).Data;
int skippedSampels = 0;
for (int sample = start; sample < end; sample++) {
// check if condition variable is true between sample - minTimeOffset and sample - maxTimeOffset
bool skip = false;
for (int checkIndex = sample + minTimeOffset; checkIndex <= sample + maxTimeOffset && !skip ; checkIndex++) {
if (dataset.GetValue(checkIndex, conditionVariable) == 0) {
skip = true;
skippedSampels++;
}
}
if (!skip) {
ItemList row = new ItemList();
double estimated = evaluator.Evaluate(sample);
double original = dataset.GetValue(sample, targetVariable);
if (updateTargetValues) {
dataset.SetValue(sample, targetVariable, estimated);
}
row.Add(new DoubleData(estimated));
row.Add(new DoubleData(original));
values.Add(row);
}
}
scope.GetVariableValue("TotalEvaluatedNodes", true).Data -= skippedSampels;
}
}
}