#region License Information
/* HeuristicLab
* Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using HeuristicLab.Core;
using HeuristicLab.Data;
namespace HeuristicLab.GP.Operators {
public class EqualiserController : OperatorBase {
public override string Description {
get { return @"TODO\r\nOperator description still missing ..."; }
}
public EqualiserController() {
AddVariableInfo(new VariableInfo("EqualiserHistogram", "Histogram of the target distribution", typeof(DoubleArrayData), VariableKind.In));
AddVariableInfo(new VariableInfo("AcceptanceProbabilities", "Acceptance probabilities of individuals falling into bins", typeof(DoubleArrayData), VariableKind.In));
AddVariableInfo(new VariableInfo("Histogram", "The histogram of the actual distribution", typeof(IntArrayData), VariableKind.In));
AddVariableInfo(new VariableInfo("Rate", "Parameter that controls the convergence rate of the population to the equalised distribution", typeof(DoubleData), VariableKind.In));
}
public override IOperation Apply(IScope scope) {
DoubleArrayData equaliserHistogram = GetVariableValue("EqualiserHistogram", scope, true);
DoubleArrayData acceptanceProbabilities = GetVariableValue("AcceptanceProbabilities", scope, false, false);
IntArrayData currentHistogram = GetVariableValue("Histogram", scope, false, false);
double rate = GetVariableValue("Rate", scope, false, false).Data;
double sum = 0.0;
Array.ForEach(currentHistogram.Data, delegate(int i) { sum += i; });
for(int i = 0; i < acceptanceProbabilities.Data.Length; i++) {
double normalizedDiff = (equaliserHistogram.Data[i] - (currentHistogram.Data[i] / sum)) / equaliserHistogram.Data[i];
acceptanceProbabilities.Data[i] = acceptanceProbabilities.Data[i] + normalizedDiff * rate;
currentHistogram.Data[i] = 0;
}
currentHistogram.FireChanged();
acceptanceProbabilities.FireChanged();
return null;
}
}
}