#region License Information
/* HeuristicLab
* Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using System.Linq;
namespace HeuristicLab.OptimizationExpertSystem.Common {
[Item("K-Nearest Neighbor Recommender", "")]
[StorableClass]
public sealed class KNearestNeighborRecommender : ParameterizedNamedItem, IAlgorithmInstanceRecommender {
private IFixedValueParameter KParameter {
get { return (IFixedValueParameter)Parameters["K"]; }
}
[StorableConstructor]
private KNearestNeighborRecommender(bool deserializing) : base(deserializing) { }
private KNearestNeighborRecommender(KNearestNeighborRecommender original, Cloner cloner) : base(original, cloner) { }
public KNearestNeighborRecommender() {
Parameters.Add(new FixedValueParameter("K", "The number of nearest neighbors to consider.", new IntValue(3)));
}
public override IDeepCloneable Clone(Cloner cloner) {
return new KNearestNeighborRecommender(this, cloner);
}
public IRecommendationModel TrainModel(IRun[] problemInstances, KnowledgeCenter kc, string[] characteristics) {
var perfData = problemInstances.Select(pi => new { ProblemInstance = pi, Performance = kc.GetAlgorithmPerformanceLog10(pi) })
.ToDictionary(x => x.ProblemInstance, x => x.Performance);
return new KNearestNeighborModel(KParameter.Value.Value, perfData, characteristics);
}
}
}