#region License Information
/* HeuristicLab
* Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Globalization;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Operators;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Analysis.FitnessLandscape {
[Item("Problem Instance Similarity Analyzer", "Base class for analyzing whether certain obtained characteristics match the characteristics of already known problem instances.")]
[StorableClass]
public abstract class ProblemInstanceAnalyzer : SingleSuccessorOperator, IAnalyzer {
public bool EnabledByDefault {
get { return false; }
}
[Storable]
private IResultParameter similarInstParam;
public IResultParameter SimilarInstancesParameter {
get { return similarInstParam; }
}
[Storable]
private IValueParameter characteristicsParam;
public IValueParameter CharacteristicsParameter {
get { return characteristicsParam; }
}
public DoubleMatrix Characteristics {
get { return CharacteristicsParameter.Value; }
set { CharacteristicsParameter.Value = value; }
}
[StorableConstructor]
protected ProblemInstanceAnalyzer(bool deserializing) : base(deserializing) { }
protected ProblemInstanceAnalyzer(ProblemInstanceAnalyzer original, Cloner cloner)
: base(original, cloner) {
similarInstParam = cloner.Clone(original.similarInstParam);
characteristicsParam = cloner.Clone(original.characteristicsParam);
}
public ProblemInstanceAnalyzer() {
Parameters.Add(similarInstParam = new ResultParameter("Similar Instances", "Ordered enumeration of similar problem instances to the one currently observed.", "Results", new StringMatrix(new [,] { { "undefined", double.NaN.ToString(CultureInfo.CurrentCulture.NumberFormat) } })));
Parameters.Add(characteristicsParam = new ValueParameter("Characteristics", "The matrix that contains the characteristics data and corresponding problem instance as row name."));
}
public override IOperation Apply() {
var kbCharacteristics = Characteristics;
if (kbCharacteristics == null) throw new InvalidOperationException("No characteristics are given.");
var currentCharacteristics = GetCharacteristics();
if (currentCharacteristics == null) return base.Apply();
var means = kbCharacteristics.GetRow(kbCharacteristics.Rows - 2).ToArray();
var stdevs = kbCharacteristics.GetRow(kbCharacteristics.Rows - 1).ToArray();
for (var i = 0; i < means.Length; i++) {
currentCharacteristics[i] = (currentCharacteristics[i] - means[i]) / stdevs[i];
}
var order = Enumerable.Range(0, kbCharacteristics.Rows - 2)
.Select(row => new { Row = row, MSE = kbCharacteristics.GetRow(row).Zip(currentCharacteristics, (a, b) => (a - b) * (a - b)).Average() })
.OrderBy(x => x.MSE);
var instances = kbCharacteristics.RowNames.ToList();
while (instances.Count < kbCharacteristics.Rows - 2)
instances.Add(instances.Count.ToString(CultureInfo.CurrentCulture.NumberFormat));
var result = new StringMatrix(instances.Count, 2);
var idx = 0;
foreach (var o in order) {
result[idx, 0] = instances[o.Row];
result[idx, 1] = o.MSE.ToString(CultureInfo.CurrentCulture.NumberFormat);
idx++;
}
similarInstParam.ActualValue = result;
return base.Apply();
}
protected abstract DoubleArray GetCharacteristics();
}
}