#region License Information
/* HeuristicLab
* Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Operators;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using System;
using System.Collections.Generic;
using System.Linq;
namespace HeuristicLab.Analysis.FitnessLandscape {
[Item("Ruggedness Calculator", "Calculates ruggedness descriptors froma given quality trail.")]
[StorableClass]
public class RuggednessCalculator : SingleSuccessorOperator {
#region Parameters
public LookupParameter QualityTrailParameter {
get { return (LookupParameter)Parameters["QualityTrail"]; }
}
public LookupParameter CorrelationLengthParameter {
get { return (LookupParameter)Parameters["CorrelationLength"]; }
}
public LookupParameter AutoCorrelationParameter {
get { return (LookupParameter)Parameters["AutoCorrelation"]; }
}
#endregion
#region Constructors & Cloning
[StorableConstructor]
protected RuggednessCalculator(bool deserializing) : base(deserializing) { }
protected RuggednessCalculator(RuggednessCalculator original, Cloner cloner) : base(original, cloner) { }
public RuggednessCalculator() {
Parameters.Add(new LookupParameter("QualityTrail", "Historical values of walk qualities"));
Parameters.Add(new LookupParameter("CorrelationLength", "Average maximum distances between correlated quality values."));
Parameters.Add(new LookupParameter("AutoCorrelation", "AutoCorrelation"));
}
public override IDeepCloneable Clone(Cloner cloner) {
return new RuggednessCalculator(this, cloner);
}
#endregion
public override IOperation Apply() {
double[] qualities = QualityTrailParameter.ActualValue.Rows.First().Values.ToArray();
double[] autocorrelation;
CorrelationLengthParameter.ActualValue = new IntValue(CalculateCorrelationLength(qualities, out autocorrelation));
AutoCorrelationParameter.ActualValue = new DoubleArray(autocorrelation);
return base.Apply();
}
public static int CalculateCorrelationLength(double[] qualities, out double[] acf) {
double[] correlations = new double[qualities.Length];
alglib.corr.corrr1dcircular(qualities, qualities.Length, qualities, qualities.Length, ref correlations);
double mean = 0;
double variance = 0;
double skewness = 0;
double kurtosis = 0;
alglib.basestat.samplemoments(qualities, qualities.Length, ref mean, ref variance, ref skewness, ref kurtosis);
List autocorrelation = new List() { 1.0 };
int correlationLength = -1, counter = 1;
for (; counter < qualities.Length / 2; counter++) {
double value = correlations[counter] / qualities.Length - mean * mean;
if (variance > 0)
value = Math.Max(Math.Min(value / variance, 1.0), -1.0);
else
value = 1;
autocorrelation.Add(value);
if (value < 0 && correlationLength < 0) correlationLength = counter;
}
acf = autocorrelation.ToArray();
return correlationLength - 1;
}
public static bool AnyGreaterOne(double[] values) {
return values.Any(d => d > 1);
}
}
}