Free cookie consent management tool by TermsFeed Policy Generator

source: branches/PerformanceComparison/HeuristicLab.Algorithms.MemPR/3.3/MemPRContext.cs @ 14778

Last change on this file since 14778 was 14694, checked in by abeham, 8 years ago

#2457: fixed memory leak in MemPR

File size: 23.7 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using System.Runtime.CompilerServices;
26using System.Threading;
27using HeuristicLab.Algorithms.MemPR.Interfaces;
28using HeuristicLab.Analysis.FitnessLandscape;
29using HeuristicLab.Common;
30using HeuristicLab.Core;
31using HeuristicLab.Data;
32using HeuristicLab.Optimization;
33using HeuristicLab.Parameters;
34using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
35using HeuristicLab.Random;
36using ExecutionContext = HeuristicLab.Core.ExecutionContext;
37
38namespace HeuristicLab.Algorithms.MemPR {
39  [Item("MemPRContext", "Abstract base class for MemPR contexts.")]
40  [StorableClass]
41  public abstract class MemPRPopulationContext<TProblem, TSolution, TPopulationContext, TSolutionContext> : ParameterizedNamedItem,
42    IPopulationBasedHeuristicAlgorithmContext<TProblem, TSolution>, ISolutionModelContext<TSolution>, IEvaluationServiceContext<TSolution>,
43    ILocalSearchPathContext<TSolution>
44    where TProblem : class, IItem, ISingleObjectiveHeuristicOptimizationProblem
45      where TSolution : class, IItem
46      where TPopulationContext : MemPRPopulationContext<TProblem, TSolution, TPopulationContext, TSolutionContext>
47      where TSolutionContext : MemPRSolutionContext<TProblem, TSolution, TPopulationContext, TSolutionContext> {
48
49    private IExecutionContext parent;
50    public IExecutionContext Parent {
51      get { return parent; }
52      set { parent = value; }
53    }
54
55    [Storable]
56    private IScope scope;
57    public IScope Scope {
58      get { return scope; }
59      private set { scope = value; }
60    }
61
62    IKeyedItemCollection<string, IParameter> IExecutionContext.Parameters {
63      get { return Parameters; }
64    }
65
66    [Storable]
67    private IValueParameter<TProblem> problem;
68    public TProblem Problem {
69      get { return problem.Value; }
70      set { problem.Value = value; }
71    }
72    public bool Maximization {
73      get { return ((IValueParameter<BoolValue>)Problem.MaximizationParameter).Value.Value; }
74    }
75
76    [Storable]
77    private IValueParameter<BoolValue> initialized;
78    public bool Initialized {
79      get { return initialized.Value.Value; }
80      set { initialized.Value.Value = value; }
81    }
82
83    [Storable]
84    private IValueParameter<IntValue> iterations;
85    public int Iterations {
86      get { return iterations.Value.Value; }
87      set { iterations.Value.Value = value; }
88    }
89
90    [Storable]
91    private IValueParameter<IntValue> evaluatedSolutions;
92    public int EvaluatedSolutions {
93      get { return evaluatedSolutions.Value.Value; }
94      set { evaluatedSolutions.Value.Value = value; }
95    }
96
97    [Storable]
98    private IValueParameter<DoubleValue> bestQuality;
99    public double BestQuality {
100      get { return bestQuality.Value.Value; }
101      set { bestQuality.Value.Value = value; }
102    }
103
104    [Storable]
105    private IValueParameter<TSolution> bestSolution;
106    public TSolution BestSolution {
107      get { return bestSolution.Value; }
108      set { bestSolution.Value = value; }
109    }
110
111    [Storable]
112    private IValueParameter<IntValue> localSearchEvaluations;
113    public int LocalSearchEvaluations {
114      get { return localSearchEvaluations.Value.Value; }
115      set { localSearchEvaluations.Value.Value = value; }
116    }
117
118    [Storable]
119    private IValueParameter<DoubleValue> localOptimaLevel;
120    public double LocalOptimaLevel {
121      get { return localOptimaLevel.Value.Value; }
122      set { localOptimaLevel.Value.Value = value; }
123    }
124
125    [Storable]
126    private IValueParameter<IntValue> byBreeding;
127    public int ByBreeding {
128      get { return byBreeding.Value.Value; }
129      set { byBreeding.Value.Value = value; }
130    }
131
132    [Storable]
133    private IValueParameter<IntValue> byRelinking;
134    public int ByRelinking {
135      get { return byRelinking.Value.Value; }
136      set { byRelinking.Value.Value = value; }
137    }
138
139    [Storable]
140    private IValueParameter<IntValue> byDelinking;
141    public int ByDelinking {
142      get { return byDelinking.Value.Value; }
143      set { byDelinking.Value.Value = value; }
144    }
145
146    [Storable]
147    private IValueParameter<IntValue> bySampling;
148    public int BySampling {
149      get { return bySampling.Value.Value; }
150      set { bySampling.Value.Value = value; }
151    }
152
153    [Storable]
154    private IValueParameter<IntValue> byHillclimbing;
155    public int ByHillclimbing {
156      get { return byHillclimbing.Value.Value; }
157      set { byHillclimbing.Value.Value = value; }
158    }
159
160    [Storable]
161    private IValueParameter<IntValue> byAdaptivewalking;
162    public int ByAdaptivewalking {
163      get { return byAdaptivewalking.Value.Value; }
164      set { byAdaptivewalking.Value.Value = value; }
165    }
166
167    [Storable]
168    private IValueParameter<DirectedPath<TSolution>> relinkedPaths;
169    public DirectedPath<TSolution> RelinkedPaths {
170      get { return relinkedPaths.Value; }
171      set { relinkedPaths.Value = value; }
172    }
173
174    [Storable]
175    private IValueParameter<DirectedPath<TSolution>> localSearchPaths;
176    public DirectedPath<TSolution> LocalSearchPaths {
177      get { return localSearchPaths.Value; }
178      set { localSearchPaths.Value = value; }
179    }
180
181    [Storable]
182    private IValueParameter<IRandom> random;
183    public IRandom Random {
184      get { return random.Value; }
185      set { random.Value = value; }
186    }
187   
188    public IEnumerable<ISingleObjectiveSolutionScope<TSolution>> Population {
189      get { return scope.SubScopes.OfType<ISingleObjectiveSolutionScope<TSolution>>(); }
190    }
191    public void AddToPopulation(ISingleObjectiveSolutionScope<TSolution> solScope) {
192      scope.SubScopes.Add(solScope);
193    }
194    public void ReplaceAtPopulation(int index, ISingleObjectiveSolutionScope<TSolution> solScope) {
195      scope.SubScopes[index] = solScope;
196    }
197    public ISingleObjectiveSolutionScope<TSolution> AtPopulation(int index) {
198      return scope.SubScopes[index] as ISingleObjectiveSolutionScope<TSolution>;
199    }
200    public void SortPopulation() {
201      scope.SubScopes.Replace(scope.SubScopes.OfType<ISingleObjectiveSolutionScope<TSolution>>().OrderBy(x => Maximization ? -x.Fitness : x.Fitness).ToList());
202    }
203    public int PopulationCount {
204      get { return scope.SubScopes.Count; }
205    }
206   
207    [Storable]
208    private List<Tuple<double, double, double, double>> breedingStat;
209    public IEnumerable<Tuple<double, double, double, double>> BreedingStat {
210      get { return breedingStat; }
211    }
212    [Storable]
213    private List<Tuple<double, double, double, double>> relinkingStat;
214    public IEnumerable<Tuple<double, double, double, double>> RelinkingStat {
215      get { return relinkingStat; }
216    }
217    [Storable]
218    private List<Tuple<double, double, double, double>> delinkingStat;
219    public IEnumerable<Tuple<double, double, double, double>> DelinkingStat {
220      get { return delinkingStat; }
221    }
222    [Storable]
223    private List<Tuple<double, double>> samplingStat;
224    public IEnumerable<Tuple<double, double>> SamplingStat {
225      get { return samplingStat; }
226    }
227    [Storable]
228    private List<Tuple<double, double>> hillclimbingStat;
229    public IEnumerable<Tuple<double, double>> HillclimbingStat {
230      get { return hillclimbingStat; }
231    }
232    [Storable]
233    private List<Tuple<double, double>> adaptivewalkingStat;
234    public IEnumerable<Tuple<double, double>> AdaptivewalkingStat {
235      get { return adaptivewalkingStat; }
236    }
237
238    public double AverageQuality {
239      get {
240        return Problem.Parameters.ContainsKey("AverageQuality")
241          ? ((IValueParameter<DoubleValue>)Problem.Parameters["AverageQuality"]).Value.Value
242          : double.NaN;
243      }
244    }
245
246    public double LowerBound {
247      get {
248        return Problem.Parameters.ContainsKey("LowerBound")
249          ? ((IValueParameter<DoubleValue>)Problem.Parameters["LowerBound"]).Value.Value
250          : double.NaN;
251      }
252    }
253
254    [Storable]
255    public ISolutionModel<TSolution> Model { get; set; }
256
257    [StorableConstructor]
258    protected MemPRPopulationContext(bool deserializing) : base(deserializing) { }
259    protected MemPRPopulationContext(MemPRPopulationContext<TProblem, TSolution, TPopulationContext, TSolutionContext> original, Cloner cloner)
260      : base(original, cloner) {
261      scope = cloner.Clone(original.scope);
262      problem = cloner.Clone(original.problem);
263      initialized = cloner.Clone(original.initialized);
264      iterations = cloner.Clone(original.iterations);
265      evaluatedSolutions = cloner.Clone(original.evaluatedSolutions);
266      bestQuality = cloner.Clone(original.bestQuality);
267      bestSolution = cloner.Clone(original.bestSolution);
268      localSearchEvaluations = cloner.Clone(original.localSearchEvaluations);
269      localOptimaLevel = cloner.Clone(original.localOptimaLevel);
270      byBreeding = cloner.Clone(original.byBreeding);
271      byRelinking = cloner.Clone(original.byRelinking);
272      byDelinking = cloner.Clone(original.byDelinking);
273      bySampling = cloner.Clone(original.bySampling);
274      byHillclimbing = cloner.Clone(original.byHillclimbing);
275      byAdaptivewalking = cloner.Clone(original.byAdaptivewalking);
276      relinkedPaths = cloner.Clone(original.relinkedPaths);
277      localSearchPaths = cloner.Clone(original.localSearchPaths);
278      random = cloner.Clone(original.random);
279      breedingStat = original.breedingStat.Select(x => Tuple.Create(x.Item1, x.Item2, x.Item3, x.Item4)).ToList();
280      relinkingStat = original.relinkingStat.Select(x => Tuple.Create(x.Item1, x.Item2, x.Item3, x.Item4)).ToList();
281      delinkingStat = original.delinkingStat.Select(x => Tuple.Create(x.Item1, x.Item2, x.Item3, x.Item4)).ToList();
282      samplingStat = original.samplingStat.Select(x => Tuple.Create(x.Item1, x.Item2)).ToList();
283      hillclimbingStat = original.hillclimbingStat.Select(x => Tuple.Create(x.Item1, x.Item2)).ToList();
284      adaptivewalkingStat = original.adaptivewalkingStat.Select(x => Tuple.Create(x.Item1, x.Item2)).ToList();
285     
286      Model = cloner.Clone(original.Model);
287    }
288    public MemPRPopulationContext() : this("MemPRContext") { }
289    public MemPRPopulationContext(string name) : base(name) {
290      scope = new Scope("Global");
291
292      Parameters.Add(problem = new ValueParameter<TProblem>("Problem"));
293      Parameters.Add(initialized = new ValueParameter<BoolValue>("Initialized", new BoolValue(false)));
294      Parameters.Add(iterations = new ValueParameter<IntValue>("Iterations", new IntValue(0)));
295      Parameters.Add(evaluatedSolutions = new ValueParameter<IntValue>("EvaluatedSolutions", new IntValue(0)));
296      Parameters.Add(bestQuality = new ValueParameter<DoubleValue>("BestQuality", new DoubleValue(double.NaN)));
297      Parameters.Add(bestSolution = new ValueParameter<TSolution>("BestFoundSolution"));
298      Parameters.Add(localSearchEvaluations = new ValueParameter<IntValue>("LocalSearchEvaluations", new IntValue(0)));
299      Parameters.Add(localOptimaLevel = new ValueParameter<DoubleValue>("LocalOptimaLevel", new DoubleValue(0)));
300      Parameters.Add(byBreeding = new ValueParameter<IntValue>("ByBreeding", new IntValue(0)));
301      Parameters.Add(byRelinking = new ValueParameter<IntValue>("ByRelinking", new IntValue(0)));
302      Parameters.Add(byDelinking = new ValueParameter<IntValue>("ByDelinking", new IntValue(0)));
303      Parameters.Add(bySampling = new ValueParameter<IntValue>("BySampling", new IntValue(0)));
304      Parameters.Add(byHillclimbing = new ValueParameter<IntValue>("ByHillclimbing", new IntValue(0)));
305      Parameters.Add(byAdaptivewalking = new ValueParameter<IntValue>("ByAdaptivewalking", new IntValue(0)));
306      Parameters.Add(relinkedPaths = new ValueParameter<DirectedPath<TSolution>>("RelinkedPaths", new DirectedPath<TSolution>()));
307      Parameters.Add(localSearchPaths = new ValueParameter<DirectedPath<TSolution>>("LocalSearchPaths", new DirectedPath<TSolution>()));
308      Parameters.Add(random = new ValueParameter<IRandom>("Random", new MersenneTwister()));
309
310      breedingStat = new List<Tuple<double, double, double, double>>();
311      relinkingStat = new List<Tuple<double, double, double, double>>();
312      delinkingStat = new List<Tuple<double, double, double, double>>();
313      samplingStat = new List<Tuple<double, double>>();
314      hillclimbingStat = new List<Tuple<double, double>>();
315      adaptivewalkingStat = new List<Tuple<double, double>>();
316    }
317
318    public abstract ISingleObjectiveSolutionScope<TSolution> ToScope(TSolution code, double fitness = double.NaN);
319
320    public virtual double Evaluate(TSolution solution, CancellationToken token) {
321      var solScope = ToScope(solution);
322      Evaluate(solScope, token);
323      solScope.Solution = null;
324      return solScope.Fitness;
325    }
326
327    public virtual void Evaluate(ISingleObjectiveSolutionScope<TSolution> solScope, CancellationToken token) {
328      var pdef = Problem as ISingleObjectiveProblemDefinition;
329      if (pdef != null) {
330        var ind = new SingleEncodingIndividual(pdef.Encoding, solScope);
331        solScope.Fitness = pdef.Evaluate(ind, Random);
332      } else {
333        RunOperator(Problem.Evaluator, solScope, token);
334      }
335    }
336
337    public abstract TSolutionContext CreateSingleSolutionContext(ISingleObjectiveSolutionScope<TSolution> solution);
338
339    public void IncrementEvaluatedSolutions(int byEvaluations) {
340      if (byEvaluations < 0) throw new ArgumentException("Can only increment and not decrement evaluated solutions.");
341      EvaluatedSolutions += byEvaluations;
342    }
343
344    #region Breeding Performance
345    public void AddBreedingResult(ISingleObjectiveSolutionScope<TSolution> a, ISingleObjectiveSolutionScope<TSolution> b, double parentDist, ISingleObjectiveSolutionScope<TSolution> child) {
346      if (IsBetter(a, b))
347        breedingStat.Add(Tuple.Create(a.Fitness, b.Fitness, parentDist, child.Fitness));
348      else breedingStat.Add(Tuple.Create(b.Fitness, a.Fitness, parentDist, child.Fitness));
349    }
350    public bool BreedingSuited(ISingleObjectiveSolutionScope<TSolution> p1, ISingleObjectiveSolutionScope<TSolution> p2, double dist) {
351      return true;
352    }
353    #endregion
354
355    #region Relinking Performance
356    public void AddRelinkingResult(ISingleObjectiveSolutionScope<TSolution> a, ISingleObjectiveSolutionScope<TSolution> b, double parentDist, ISingleObjectiveSolutionScope<TSolution> child) {
357      if (IsBetter(a, b))
358        relinkingStat.Add(Tuple.Create(a.Fitness, b.Fitness, parentDist, Maximization ? child.Fitness - a.Fitness : a.Fitness - child.Fitness));
359      else relinkingStat.Add(Tuple.Create(a.Fitness, b.Fitness, parentDist, Maximization ? child.Fitness - b.Fitness : b.Fitness - child.Fitness));
360    }
361    public bool RelinkSuited(ISingleObjectiveSolutionScope<TSolution> p1, ISingleObjectiveSolutionScope<TSolution> p2, double dist) {
362      return true;
363    }
364    #endregion
365
366    #region Delinking Performance
367    public void AddDelinkingResult(ISingleObjectiveSolutionScope<TSolution> a, ISingleObjectiveSolutionScope<TSolution> b, double parentDist, ISingleObjectiveSolutionScope<TSolution> child) {
368      if (IsBetter(a, b))
369        delinkingStat.Add(Tuple.Create(a.Fitness, b.Fitness, parentDist, Maximization ? child.Fitness - a.Fitness : a.Fitness - child.Fitness));
370      else delinkingStat.Add(Tuple.Create(a.Fitness, b.Fitness, parentDist, Maximization ? child.Fitness - b.Fitness : b.Fitness - child.Fitness));
371    }
372    public bool DelinkSuited(ISingleObjectiveSolutionScope<TSolution> p1, ISingleObjectiveSolutionScope<TSolution> p2, double dist) {
373      return true;
374    }
375    #endregion
376
377    #region Sampling Performance
378    public void AddSamplingResult(ISingleObjectiveSolutionScope<TSolution> sample, double avgDist) {
379      samplingStat.Add(Tuple.Create(avgDist, sample.Fitness));
380    }
381    public bool SamplingSuited(double avgDist) {
382      return true;
383    }
384    #endregion
385
386    #region Hillclimbing Performance
387    public void AddHillclimbingResult(ISingleObjectiveSolutionScope<TSolution> input, ISingleObjectiveSolutionScope<TSolution> outcome) {
388      hillclimbingStat.Add(Tuple.Create(input.Fitness, Maximization ? outcome.Fitness - input.Fitness : input.Fitness - outcome.Fitness));
389    }
390    public bool HillclimbingSuited(double startingFitness) {
391      return true;
392    }
393    #endregion
394
395    #region Adaptivewalking Performance
396    public void AddAdaptivewalkingResult(ISingleObjectiveSolutionScope<TSolution> input, ISingleObjectiveSolutionScope<TSolution> outcome) {
397      adaptivewalkingStat.Add(Tuple.Create(input.Fitness, Maximization ? outcome.Fitness - input.Fitness : input.Fitness - outcome.Fitness));
398    }
399    public bool AdaptivewalkingSuited(double startingFitness) {
400      return true;
401    }
402    #endregion
403
404    [MethodImpl(MethodImplOptions.AggressiveInlining)]
405    public bool IsBetter(ISingleObjectiveSolutionScope<TSolution> a, ISingleObjectiveSolutionScope<TSolution> b) {
406      return IsBetter(a.Fitness, b.Fitness);
407    }
408    [MethodImpl(MethodImplOptions.AggressiveInlining)]
409    public bool IsBetter(double a, double b) {
410      return double.IsNaN(b) && !double.IsNaN(a)
411        || Maximization && a > b
412        || !Maximization && a < b;
413    }
414
415    #region IExecutionContext members
416    public IAtomicOperation CreateOperation(IOperator op) {
417      return new ExecutionContext(this, op, Scope);
418    }
419
420    public IAtomicOperation CreateOperation(IOperator op, IScope s) {
421      return new ExecutionContext(this, op, s);
422    }
423
424    public IAtomicOperation CreateChildOperation(IOperator op) {
425      return new ExecutionContext(this, op, Scope);
426    }
427
428    public IAtomicOperation CreateChildOperation(IOperator op, IScope s) {
429      return new ExecutionContext(this, op, s);
430    }
431    #endregion
432
433    #region Engine Helper
434    public void RunOperator(IOperator op, IScope scope, CancellationToken cancellationToken) {
435      var stack = new Stack<IOperation>();
436      stack.Push(CreateChildOperation(op, scope));
437
438      while (stack.Count > 0) {
439        cancellationToken.ThrowIfCancellationRequested();
440
441        var next = stack.Pop();
442        if (next is OperationCollection) {
443          var coll = (OperationCollection)next;
444          for (int i = coll.Count - 1; i >= 0; i--)
445            if (coll[i] != null) stack.Push(coll[i]);
446        } else if (next is IAtomicOperation) {
447          var operation = (IAtomicOperation)next;
448          try {
449            next = operation.Operator.Execute((IExecutionContext)operation, cancellationToken);
450          } catch (Exception ex) {
451            stack.Push(operation);
452            if (ex is OperationCanceledException) throw ex;
453            else throw new OperatorExecutionException(operation.Operator, ex);
454          }
455          if (next != null) stack.Push(next);
456        }
457      }
458    }
459    #endregion
460  }
461
462  [Item("SingleSolutionMemPRContext", "Abstract base class for single solution MemPR contexts.")]
463  [StorableClass]
464  public abstract class MemPRSolutionContext<TProblem, TSolution, TContext, TSolutionContext> : ParameterizedNamedItem,
465    ISingleSolutionHeuristicAlgorithmContext<TProblem, TSolution>, IEvaluationServiceContext<TSolution>
466      where TProblem : class, IItem, ISingleObjectiveHeuristicOptimizationProblem
467      where TSolution : class, IItem
468      where TContext : MemPRPopulationContext<TProblem, TSolution, TContext, TSolutionContext>
469      where TSolutionContext : MemPRSolutionContext<TProblem, TSolution, TContext, TSolutionContext> {
470
471    private TContext parent;
472    protected TContext BaseContext {
473      get { return parent;}
474    }
475    public IExecutionContext Parent {
476      get { return parent; }
477      set { throw new InvalidOperationException("Cannot set the parent of a single-solution context."); }
478    }
479
480    [Storable]
481    private ISingleObjectiveSolutionScope<TSolution> scope;
482    public IScope Scope {
483      get { return scope; }
484    }
485
486    IKeyedItemCollection<string, IParameter> IExecutionContext.Parameters {
487      get { return Parameters; }
488    }
489
490    public TProblem Problem {
491      get { return parent.Problem; }
492    }
493    public bool Maximization {
494      get { return parent.Maximization; }
495    }
496
497    public double BestQuality {
498      get { return parent.BestQuality; }
499      set { parent.BestQuality = value; }
500    }
501
502    public TSolution BestSolution {
503      get { return parent.BestSolution; }
504      set { parent.BestSolution = value; }
505    }
506
507    public IRandom Random {
508      get { return parent.Random; }
509    }
510
511    [Storable]
512    private IValueParameter<IntValue> evaluatedSolutions;
513    public int EvaluatedSolutions {
514      get { return evaluatedSolutions.Value.Value; }
515      set { evaluatedSolutions.Value.Value = value; }
516    }
517
518    [Storable]
519    private IValueParameter<IntValue> iterations;
520    public int Iterations {
521      get { return iterations.Value.Value; }
522      set { iterations.Value.Value = value; }
523    }
524
525    ISingleObjectiveSolutionScope<TSolution> ISingleSolutionHeuristicAlgorithmContext<TProblem, TSolution>.Solution {
526      get { return scope; }
527    }
528
529    [StorableConstructor]
530    protected MemPRSolutionContext(bool deserializing) : base(deserializing) { }
531    protected MemPRSolutionContext(MemPRSolutionContext<TProblem, TSolution, TContext, TSolutionContext> original, Cloner cloner)
532      : base(original, cloner) {
533      scope = cloner.Clone(original.scope);
534      evaluatedSolutions = cloner.Clone(original.evaluatedSolutions);
535      iterations = cloner.Clone(original.iterations);
536    }
537    public MemPRSolutionContext(TContext baseContext, ISingleObjectiveSolutionScope<TSolution> solution) {
538      parent = baseContext;
539      scope = solution;
540     
541      Parameters.Add(evaluatedSolutions = new ValueParameter<IntValue>("EvaluatedSolutions", new IntValue(0)));
542      Parameters.Add(iterations = new ValueParameter<IntValue>("Iterations", new IntValue(0)));
543    }
544
545    public void IncrementEvaluatedSolutions(int byEvaluations) {
546      if (byEvaluations < 0) throw new ArgumentException("Can only increment and not decrement evaluated solutions.");
547      EvaluatedSolutions += byEvaluations;
548    }
549    public virtual double Evaluate(TSolution solution, CancellationToken token) {
550      return parent.Evaluate(solution, token);
551    }
552
553    public virtual void Evaluate(ISingleObjectiveSolutionScope<TSolution> solScope, CancellationToken token) {
554      parent.Evaluate(solScope, token);
555    }
556
557    #region IExecutionContext members
558    public IAtomicOperation CreateOperation(IOperator op) {
559      return new ExecutionContext(this, op, Scope);
560    }
561
562    public IAtomicOperation CreateOperation(IOperator op, IScope s) {
563      return new ExecutionContext(this, op, s);
564    }
565
566    public IAtomicOperation CreateChildOperation(IOperator op) {
567      return new ExecutionContext(this, op, Scope);
568    }
569
570    public IAtomicOperation CreateChildOperation(IOperator op, IScope s) {
571      return new ExecutionContext(this, op, s);
572    }
573    #endregion
574  }
575}
Note: See TracBrowser for help on using the repository browser.