#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
[StorableClass]
[Item("SymbolicClassificationPruningOperator", "An operator which prunes symbolic classificaton trees.")]
public class SymbolicClassificationPruningOperator : SymbolicDataAnalysisExpressionPruningOperator {
private const string ModelCreatorParameterName = "ModelCreator";
private const string EvaluatorParameterName = "Evaluator";
#region parameter properties
public ILookupParameter ModelCreatorParameter {
get { return (ILookupParameter)Parameters[ModelCreatorParameterName]; }
}
public ILookupParameter EvaluatorParameter {
get {
return (ILookupParameter)Parameters[EvaluatorParameterName];
}
}
#endregion
protected SymbolicClassificationPruningOperator(SymbolicClassificationPruningOperator original, Cloner cloner) : base(original, cloner) { }
public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicClassificationPruningOperator(this, cloner); }
[StorableConstructor]
protected SymbolicClassificationPruningOperator(bool deserializing) : base(deserializing) { }
public SymbolicClassificationPruningOperator(ISymbolicDataAnalysisSolutionImpactValuesCalculator impactValuesCalculator)
: base(impactValuesCalculator) {
Parameters.Add(new LookupParameter(ModelCreatorParameterName));
Parameters.Add(new LookupParameter(EvaluatorParameterName));
}
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() {
// BackwardsCompatibility3.3
#region Backwards compatible code, remove with 3.4
base.ImpactValuesCalculator = new SymbolicClassificationSolutionImpactValuesCalculator();
if (!Parameters.ContainsKey(EvaluatorParameterName)) {
Parameters.Add(new LookupParameter(EvaluatorParameterName));
}
#endregion
}
protected override ISymbolicDataAnalysisModel CreateModel(ISymbolicExpressionTree tree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, IDataAnalysisProblemData problemData, DoubleLimit estimationLimits) {
var model = ModelCreatorParameter.ActualValue.CreateSymbolicClassificationModel(tree, interpreter, estimationLimits.Lower, estimationLimits.Upper);
var classificationProblemData = (IClassificationProblemData)problemData;
var rows = classificationProblemData.TrainingIndices;
model.RecalculateModelParameters(classificationProblemData, rows);
return model;
}
protected override double Evaluate(IDataAnalysisModel model) {
var evaluator = EvaluatorParameter.ActualValue;
var classificationModel = (ISymbolicClassificationModel)model;
var classificationProblemData = (IClassificationProblemData)ProblemDataParameter.ActualValue;
var rows = Enumerable.Range(FitnessCalculationPartitionParameter.ActualValue.Start, FitnessCalculationPartitionParameter.ActualValue.Size);
return evaluator.Evaluate(this.ExecutionContext, classificationModel.SymbolicExpressionTree, classificationProblemData, rows);
}
public static ISymbolicExpressionTree Prune(ISymbolicExpressionTree tree, ISymbolicClassificationModelCreator modelCreator,
SymbolicClassificationSolutionImpactValuesCalculator impactValuesCalculator, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter,
IClassificationProblemData problemData, DoubleLimit estimationLimits, IEnumerable rows,
double nodeImpactThreshold = 0.0, bool pruneOnlyZeroImpactNodes = false) {
var clonedTree = (ISymbolicExpressionTree)tree.Clone();
var model = modelCreator.CreateSymbolicClassificationModel(clonedTree, interpreter, estimationLimits.Lower, estimationLimits.Upper);
var nodes = clonedTree.Root.GetSubtree(0).GetSubtree(0).IterateNodesPrefix().ToList();
double qualityForImpactsCalculation = double.NaN;
for (int i = 0; i < nodes.Count; ++i) {
var node = nodes[i];
if (node is ConstantTreeNode) continue;
double impactValue, replacementValue, newQualityForImpactsCalculation;
impactValuesCalculator.CalculateImpactAndReplacementValues(model, node, problemData, rows, out impactValue, out replacementValue, out newQualityForImpactsCalculation, qualityForImpactsCalculation);
if (pruneOnlyZeroImpactNodes && !impactValue.IsAlmost(0.0)) continue;
if (!pruneOnlyZeroImpactNodes && impactValue > nodeImpactThreshold) continue;
var constantNode = (ConstantTreeNode)node.Grammar.GetSymbol("Constant").CreateTreeNode();
constantNode.Value = replacementValue;
ReplaceWithConstant(node, constantNode);
i += node.GetLength() - 1; // skip subtrees under the node that was folded
qualityForImpactsCalculation = newQualityForImpactsCalculation;
}
return model.SymbolicExpressionTree;
}
}
}