#region License Information
/* HeuristicLab
* Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading;
using HeuristicLab.Optimization;
using HeuristicLab.Problems.Instances;
namespace HeuristicLab.Encodings.ParameterConfigurationEncoding {
public class ExperimentFactory {
private double experimentGenerationProgress;
public double ExperimentGenerationProgress {
get { return experimentGenerationProgress; }
private set {
experimentGenerationProgress = value;
OnExperimentGenerationProgressChanged();
}
}
public event EventHandler ExperimentGenerationProgressChanged;
private void OnExperimentGenerationProgressChanged() {
var handler = ExperimentGenerationProgressChanged;
if (handler != null) handler(this, EventArgs.Empty);
}
public Experiment GenerateExperiment(IAlgorithm algorithm, ParameterConfigurationTree configuration, bool createBatchRuns, int repetitions, Dictionary> problemInstances, CancellationToken ct) {
var experiment = new Experiment();
var algorithms = new List();
if (problemInstances.Values.Sum(x => x.Count) > 0) {
foreach (var provider in problemInstances) {
foreach (var descriptor in provider.Value) {
var alg = (IAlgorithm)algorithm.Clone();
ProblemInstanceManager.LoadData(provider.Key, descriptor, (IProblemInstanceConsumer)alg.Problem);
algorithms.Add(alg);
}
}
} else algorithms.Add((IAlgorithm)algorithm.Clone());
ExperimentGenerationProgress = 0;
foreach (var alg in algorithms) {
foreach (ParameterizedValueConfiguration combination in configuration) {
ct.ThrowIfCancellationRequested();
var clonedAlg = (IAlgorithm)alg.Clone();
clonedAlg.Name = combination.ParameterInfoString;
combination.Parameterize(clonedAlg);
clonedAlg.StoreAlgorithmInEachRun = false;
if (createBatchRuns) {
var batchRun = new BatchRun(string.Format("BatchRun: {0}", combination.ParameterInfoString));
batchRun.Optimizer = clonedAlg;
batchRun.Repetitions = repetitions;
experiment.Optimizers.Add(batchRun);
} else {
experiment.Optimizers.Add(clonedAlg);
}
ExperimentGenerationProgress = (double)experiment.Optimizers.Count / (configuration.GetCombinationCount(0) * algorithms.Count);
}
}
return experiment;
}
public Experiment GenerateExperiment(IAlgorithm algorithm, ParameterConfigurationTree configuration) {
return GenerateExperiment(algorithm, configuration, false, 0, null, CancellationToken.None);
}
public Experiment GenerateExperiment(IAlgorithm algorithm, ParameterConfigurationTree configuration, bool createBatchRuns, int repetitions) {
return GenerateExperiment(algorithm, configuration, createBatchRuns, repetitions, null, CancellationToken.None);
}
}
}