#region License Information
/* HeuristicLab
* Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Operators;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
[Item("VariableFrequencyAnalyser", "Calculates the accumulated frequencies of variable-symbols over the whole population.")]
[StorableClass]
public abstract class VariableFrequencyAnalyser : SingleSuccessorOperator {
private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
private const string DataAnalysisProblemDataParameterName = "DataAnalysisProblemData";
private const string VariableFrequenciesParameterName = "VariableFrequencies";
#region parameter properties
public ILookupParameter DataAnalysisProblemDataParameter {
get { return (ILookupParameter)Parameters[DataAnalysisProblemDataParameterName]; }
}
public ILookupParameter> SymbolicExpressionTreeParameter {
get { return (ILookupParameter>)Parameters[SymbolicExpressionTreeParameterName]; }
}
public ILookupParameter VariableFrequenciesParameter {
get { return (ILookupParameter)Parameters[VariableFrequenciesParameterName]; }
}
#endregion
#region properties
public DataAnalysisProblemData DataAnalysisProblemData {
get { return DataAnalysisProblemDataParameter.ActualValue; }
}
public ItemArray SymbolicExpressionTrees {
get { return SymbolicExpressionTreeParameter.ActualValue; }
}
public DoubleMatrix VariableFrequencies {
get { return VariableFrequenciesParameter.ActualValue; }
set { VariableFrequenciesParameter.ActualValue = value; }
}
#endregion
[StorableConstructor]
protected VariableFrequencyAnalyser(bool deserializing) : base(deserializing) { }
protected VariableFrequencyAnalyser(VariableFrequencyAnalyser original, Cloner cloner)
: base(original, cloner) {
}
public VariableFrequencyAnalyser()
: base() {
Parameters.Add(new ScopeTreeLookupParameter(SymbolicExpressionTreeParameterName, "The symbolic expression trees that should be analyzed."));
Parameters.Add(new LookupParameter(DataAnalysisProblemDataParameterName, "The problem data on which the for which the symbolic expression tree is a solution."));
Parameters.Add(new LookupParameter(VariableFrequenciesParameterName, "The relative variable reference frequencies aggregated over the whole population."));
}
public override IOperation Apply() {
var inputVariables = DataAnalysisProblemData.InputVariables.Select(x => x.Value);
if (VariableFrequencies == null) {
VariableFrequencies = new DoubleMatrix(0, 1, inputVariables);
}
((IStringConvertibleMatrix)VariableFrequencies).Rows = VariableFrequencies.Rows + 1;
int lastRowIndex = VariableFrequencies.Rows - 1;
var columnNames = VariableFrequencies.ColumnNames.ToList();
foreach (var pair in CalculateVariableFrequencies(SymbolicExpressionTrees, inputVariables)) {
int columnIndex = columnNames.IndexOf(pair.Key);
VariableFrequencies[lastRowIndex, columnIndex] = pair.Value;
}
return base.Apply();
}
public static IEnumerable> CalculateVariableFrequencies(IEnumerable trees, IEnumerable inputVariables) {
Dictionary variableReferencesSum = new Dictionary();
Dictionary variableFrequencies = new Dictionary();
foreach (var inputVariable in inputVariables)
variableReferencesSum[inputVariable] = 0.0;
foreach (var tree in trees) {
var variableReferences = GetVariableReferenceCount(tree, inputVariables);
foreach (var pair in variableReferences) {
variableReferencesSum[pair.Key] += pair.Value;
}
}
double totalVariableReferences = variableReferencesSum.Values.Sum();
foreach (string inputVariable in inputVariables) {
double relFreq = variableReferencesSum[inputVariable] / totalVariableReferences;
variableFrequencies.Add(inputVariable, relFreq);
}
return variableFrequencies;
}
private static IEnumerable> GetVariableReferenceCount(SymbolicExpressionTree tree, IEnumerable inputVariables) {
Dictionary references = new Dictionary();
var variableNames = from node in tree.IterateNodesPrefix().OfType()
select node.VariableName;
foreach (var variableName in variableNames) {
if (!references.ContainsKey(variableName)) {
references[variableName] = 1;
} else {
references[variableName] += 1;
}
}
return references;
}
}
}