#region License Information /* HeuristicLab * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Linq; using HeuristicLab.Analysis; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Operators; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Problems.DataAnalysis.Symbolic; namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic.Analyzers { [Item("SymbolicRegressionVariableFrequencyAnalyzer", "An operator for analyzing the variable frequencies of symbolic regression solutions given in symbolic expression tree encoding.")] [StorableClass] public sealed class SymbolicRegressionVariableFrequencyAnalyzer : SingleSuccessorOperator, ISymbolicRegressionAnalyzer { private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree"; private const string ProblemDataParameterName = "ProblemData"; private const string VariableFrequenciesParameterName = "VariableFrequencies"; private const string ResultsParameterName = "Results"; #region parameter properties public ScopeTreeLookupParameter SymbolicExpressionTreeParameter { get { return (ScopeTreeLookupParameter)Parameters[SymbolicExpressionTreeParameterName]; } } public ILookupParameter VariableFrequenciesParameter { get { return (ILookupParameter)Parameters[VariableFrequenciesParameterName]; } } public ILookupParameter ProblemDataParameter { get { return (ILookupParameter)Parameters[ProblemDataParameterName]; } } public ILookupParameter ResultsParameter { get { return (ILookupParameter)Parameters[ResultsParameterName]; } } #endregion #region properties public DataTable VariableFrequencies { get { return VariableFrequenciesParameter.ActualValue; } set { VariableFrequenciesParameter.ActualValue = value; } } #endregion [StorableConstructor] private SymbolicRegressionVariableFrequencyAnalyzer(bool deserializing) : base(deserializing) { } private SymbolicRegressionVariableFrequencyAnalyzer(SymbolicRegressionVariableFrequencyAnalyzer original, Cloner cloner) : base(original, cloner) { } public SymbolicRegressionVariableFrequencyAnalyzer() : base() { Parameters.Add(new ScopeTreeLookupParameter(SymbolicExpressionTreeParameterName, "The symbolic expression trees to analyze.")); Parameters.Add(new LookupParameter(ProblemDataParameterName, "The problem data containing the input varaibles for the symbolic regression problem.")); Parameters.Add(new ValueLookupParameter(VariableFrequenciesParameterName, "The data table to store the variable frequencies.")); Parameters.Add(new LookupParameter(ResultsParameterName, "The result collection where the best symbolic regression solution should be stored.")); } public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicRegressionVariableFrequencyAnalyzer(this, cloner); } public override IOperation Apply() { ItemArray expressions = SymbolicExpressionTreeParameter.ActualValue; DataAnalysisProblemData problemData = ProblemDataParameter.ActualValue; var inputVariables = problemData.InputVariables.Select(x => x.Value); ResultCollection results = ResultsParameter.ActualValue; if (VariableFrequencies == null) { VariableFrequencies = new DataTable("Variable frequencies", "Relative frequency of variable references aggregated over the whole population."); // add a data row for each input variable foreach (var inputVariable in inputVariables) VariableFrequencies.Rows.Add(new DataRow(inputVariable)); results.Add(new Result("Variable frequencies", VariableFrequencies)); } foreach (var pair in VariableFrequencyAnalyser.CalculateVariableFrequencies(expressions, inputVariables)) { VariableFrequencies.Rows[pair.Key].Values.Add(pair.Value); results["Variable frequencies"].Value = VariableFrequencies; } return base.Apply(); } } }