/************************************************************************* Copyright (c) 1992-2007 The University of Tennessee. All rights reserved. Contributors: * Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to pseudocode. See subroutines comments for additional copyrights. >>> SOURCE LICENSE >>> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation (www.fsf.org); either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. A copy of the GNU General Public License is available at http://www.fsf.org/licensing/licenses >>> END OF LICENSE >>> *************************************************************************/ using System; namespace alglib { public class reflections { /************************************************************************* Generation of an elementary reflection transformation The subroutine generates elementary reflection H of order N, so that, for a given X, the following equality holds true: ( X(1) ) ( Beta ) H * ( .. ) = ( 0 ) ( X(n) ) ( 0 ) where ( V(1) ) H = 1 - Tau * ( .. ) * ( V(1), ..., V(n) ) ( V(n) ) where the first component of vector V equals 1. Input parameters: X - vector. Array whose index ranges within [1..N]. N - reflection order. Output parameters: X - components from 2 to N are replaced with vector V. The first component is replaced with parameter Beta. Tau - scalar value Tau. If X is a null vector, Tau equals 0, otherwise 1 <= Tau <= 2. This subroutine is the modification of the DLARFG subroutines from the LAPACK library. MODIFICATIONS: 24.12.2005 sign(Alpha) was replaced with an analogous to the Fortran SIGN code. -- LAPACK auxiliary routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 *************************************************************************/ public static void generatereflection(ref double[] x, int n, ref double tau) { int j = 0; double alpha = 0; double xnorm = 0; double v = 0; double beta = 0; double mx = 0; double s = 0; int i_ = 0; if( n<=1 ) { tau = 0; return; } // // Scale if needed (to avoid overflow/underflow during intermediate // calculations). // mx = 0; for(j=1; j<=n; j++) { mx = Math.Max(Math.Abs(x[j]), mx); } s = 1; if( (double)(mx)!=(double)(0) ) { if( (double)(mx)<=(double)(AP.Math.MinRealNumber/AP.Math.MachineEpsilon) ) { s = AP.Math.MinRealNumber/AP.Math.MachineEpsilon; v = 1/s; for(i_=1; i_<=n;i_++) { x[i_] = v*x[i_]; } mx = mx*v; } else { if( (double)(mx)>=(double)(AP.Math.MaxRealNumber*AP.Math.MachineEpsilon) ) { s = AP.Math.MaxRealNumber*AP.Math.MachineEpsilon; v = 1/s; for(i_=1; i_<=n;i_++) { x[i_] = v*x[i_]; } mx = mx*v; } } } // // XNORM = DNRM2( N-1, X, INCX ) // alpha = x[1]; xnorm = 0; if( (double)(mx)!=(double)(0) ) { for(j=2; j<=n; j++) { xnorm = xnorm+AP.Math.Sqr(x[j]/mx); } xnorm = Math.Sqrt(xnorm)*mx; } if( (double)(xnorm)==(double)(0) ) { // // H = I // tau = 0; x[1] = x[1]*s; return; } // // general case // mx = Math.Max(Math.Abs(alpha), Math.Abs(xnorm)); beta = -(mx*Math.Sqrt(AP.Math.Sqr(alpha/mx)+AP.Math.Sqr(xnorm/mx))); if( (double)(alpha)<(double)(0) ) { beta = -beta; } tau = (beta-alpha)/beta; v = 1/(alpha-beta); for(i_=2; i_<=n;i_++) { x[i_] = v*x[i_]; } x[1] = beta; // // Scale back outputs // x[1] = x[1]*s; } /************************************************************************* Application of an elementary reflection to a rectangular matrix of size MxN The algorithm pre-multiplies the matrix by an elementary reflection transformation which is given by column V and scalar Tau (see the description of the GenerateReflection procedure). Not the whole matrix but only a part of it is transformed (rows from M1 to M2, columns from N1 to N2). Only the elements of this submatrix are changed. Input parameters: C - matrix to be transformed. Tau - scalar defining the transformation. V - column defining the transformation. Array whose index ranges within [1..M2-M1+1]. M1, M2 - range of rows to be transformed. N1, N2 - range of columns to be transformed. WORK - working array whose indexes goes from N1 to N2. Output parameters: C - the result of multiplying the input matrix C by the transformation matrix which is given by Tau and V. If N1>N2 or M1>M2, C is not modified. -- LAPACK auxiliary routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 *************************************************************************/ public static void applyreflectionfromtheleft(ref double[,] c, double tau, ref double[] v, int m1, int m2, int n1, int n2, ref double[] work) { double t = 0; int i = 0; int vm = 0; int i_ = 0; if( (double)(tau)==(double)(0) | n1>n2 | m1>m2 ) { return; } // // w := C' * v // vm = m2-m1+1; for(i=n1; i<=n2; i++) { work[i] = 0; } for(i=m1; i<=m2; i++) { t = v[i+1-m1]; for(i_=n1; i_<=n2;i_++) { work[i_] = work[i_] + t*c[i,i_]; } } // // C := C - tau * v * w' // for(i=m1; i<=m2; i++) { t = v[i-m1+1]*tau; for(i_=n1; i_<=n2;i_++) { c[i,i_] = c[i,i_] - t*work[i_]; } } } /************************************************************************* Application of an elementary reflection to a rectangular matrix of size MxN The algorithm post-multiplies the matrix by an elementary reflection transformation which is given by column V and scalar Tau (see the description of the GenerateReflection procedure). Not the whole matrix but only a part of it is transformed (rows from M1 to M2, columns from N1 to N2). Only the elements of this submatrix are changed. Input parameters: C - matrix to be transformed. Tau - scalar defining the transformation. V - column defining the transformation. Array whose index ranges within [1..N2-N1+1]. M1, M2 - range of rows to be transformed. N1, N2 - range of columns to be transformed. WORK - working array whose indexes goes from M1 to M2. Output parameters: C - the result of multiplying the input matrix C by the transformation matrix which is given by Tau and V. If N1>N2 or M1>M2, C is not modified. -- LAPACK auxiliary routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 *************************************************************************/ public static void applyreflectionfromtheright(ref double[,] c, double tau, ref double[] v, int m1, int m2, int n1, int n2, ref double[] work) { double t = 0; int i = 0; int vm = 0; int i_ = 0; int i1_ = 0; if( (double)(tau)==(double)(0) | n1>n2 | m1>m2 ) { return; } vm = n2-n1+1; for(i=m1; i<=m2; i++) { i1_ = (1)-(n1); t = 0.0; for(i_=n1; i_<=n2;i_++) { t += c[i,i_]*v[i_+i1_]; } t = t*tau; i1_ = (1) - (n1); for(i_=n1; i_<=n2;i_++) { c[i,i_] = c[i,i_] - t*v[i_+i1_]; } } } } }