/************************************************************************* Copyright (c) 1992-2007 The University of Tennessee. All rights reserved. Contributors: * Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to pseudocode. See subroutines comments for additional copyrights. >>> SOURCE LICENSE >>> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation (www.fsf.org); either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. A copy of the GNU General Public License is available at http://www.fsf.org/licensing/licenses >>> END OF LICENSE >>> *************************************************************************/ namespace alglib { public class hblas { public static void hermitianmatrixvectormultiply(ref AP.Complex[,] a, bool isupper, int i1, int i2, ref AP.Complex[] x, AP.Complex alpha, ref AP.Complex[] y) { int i = 0; int ba1 = 0; int ba2 = 0; int by1 = 0; int by2 = 0; int bx1 = 0; int bx2 = 0; int n = 0; AP.Complex v = 0; int i_ = 0; int i1_ = 0; n = i2 - i1 + 1; if (n <= 0) { return; } // // Let A = L + D + U, where // L is strictly lower triangular (main diagonal is zero) // D is diagonal // U is strictly upper triangular (main diagonal is zero) // // A*x = L*x + D*x + U*x // // Calculate D*x first // for (i = i1; i <= i2; i++) { y[i - i1 + 1] = a[i, i] * x[i - i1 + 1]; } // // Add L*x + U*x // if (isupper) { for (i = i1; i <= i2 - 1; i++) { // // Add L*x to the result // v = x[i - i1 + 1]; by1 = i - i1 + 2; by2 = n; ba1 = i + 1; ba2 = i2; i1_ = (ba1) - (by1); for (i_ = by1; i_ <= by2; i_++) { y[i_] = y[i_] + v * AP.Math.Conj(a[i, i_ + i1_]); } // // Add U*x to the result // bx1 = i - i1 + 2; bx2 = n; ba1 = i + 1; ba2 = i2; i1_ = (ba1) - (bx1); v = 0.0; for (i_ = bx1; i_ <= bx2; i_++) { v += x[i_] * a[i, i_ + i1_]; } y[i - i1 + 1] = y[i - i1 + 1] + v; } } else { for (i = i1 + 1; i <= i2; i++) { // // Add L*x to the result // bx1 = 1; bx2 = i - i1; ba1 = i1; ba2 = i - 1; i1_ = (ba1) - (bx1); v = 0.0; for (i_ = bx1; i_ <= bx2; i_++) { v += x[i_] * a[i, i_ + i1_]; } y[i - i1 + 1] = y[i - i1 + 1] + v; // // Add U*x to the result // v = x[i - i1 + 1]; by1 = 1; by2 = i - i1; ba1 = i1; ba2 = i - 1; i1_ = (ba1) - (by1); for (i_ = by1; i_ <= by2; i_++) { y[i_] = y[i_] + v * AP.Math.Conj(a[i, i_ + i1_]); } } } for (i_ = 1; i_ <= n; i_++) { y[i_] = alpha * y[i_]; } } public static void hermitianrank2update(ref AP.Complex[,] a, bool isupper, int i1, int i2, ref AP.Complex[] x, ref AP.Complex[] y, ref AP.Complex[] t, AP.Complex alpha) { int i = 0; int tp1 = 0; int tp2 = 0; AP.Complex v = 0; int i_ = 0; int i1_ = 0; if (isupper) { for (i = i1; i <= i2; i++) { tp1 = i + 1 - i1; tp2 = i2 - i1 + 1; v = alpha * x[i + 1 - i1]; for (i_ = tp1; i_ <= tp2; i_++) { t[i_] = v * AP.Math.Conj(y[i_]); } v = AP.Math.Conj(alpha) * y[i + 1 - i1]; for (i_ = tp1; i_ <= tp2; i_++) { t[i_] = t[i_] + v * AP.Math.Conj(x[i_]); } i1_ = (tp1) - (i); for (i_ = i; i_ <= i2; i_++) { a[i, i_] = a[i, i_] + t[i_ + i1_]; } } } else { for (i = i1; i <= i2; i++) { tp1 = 1; tp2 = i + 1 - i1; v = alpha * x[i + 1 - i1]; for (i_ = tp1; i_ <= tp2; i_++) { t[i_] = v * AP.Math.Conj(y[i_]); } v = AP.Math.Conj(alpha) * y[i + 1 - i1]; for (i_ = tp1; i_ <= tp2; i_++) { t[i_] = t[i_] + v * AP.Math.Conj(x[i_]); } i1_ = (tp1) - (i1); for (i_ = i1; i_ <= i; i_++) { a[i, i_] = a[i, i_] + t[i_ + i1_]; } } } } } }