/************************************************************************* Copyright (c) 2009, Sergey Bochkanov (ALGLIB project). >>> SOURCE LICENSE >>> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation (www.fsf.org); either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. A copy of the GNU General Public License is available at http://www.fsf.org/licensing/licenses >>> END OF LICENSE >>> *************************************************************************/ using System; namespace alglib { public class dforest { public struct decisionforest { public int nvars; public int nclasses; public int ntrees; public int bufsize; public double[] trees; }; public struct dfreport { public double relclserror; public double avgce; public double rmserror; public double avgerror; public double avgrelerror; public double oobrelclserror; public double oobavgce; public double oobrmserror; public double oobavgerror; public double oobavgrelerror; }; public struct dfinternalbuffers { public double[] treebuf; public int[] idxbuf; public double[] tmpbufr; public double[] tmpbufr2; public int[] tmpbufi; public int[] classibuf; public int[] varpool; public bool[] evsbin; public double[] evssplits; }; public const int dfvnum = 8; public const int innernodewidth = 3; public const int leafnodewidth = 2; public const int dfusestrongsplits = 1; public const int dfuseevs = 2; /************************************************************************* This subroutine builds random decision forest. INPUT PARAMETERS: XY - training set NPoints - training set size, NPoints>=1 NVars - number of independent variables, NVars>=1 NClasses - task type: * NClasses=1 - regression task with one dependent variable * NClasses>1 - classification task with NClasses classes. NTrees - number of trees in a forest, NTrees>=1. recommended values: 50-100. R - percent of a training set used to build individual trees. 01). * 1, if task has been solved DF - model built Rep - training report, contains error on a training set and out-of-bag estimates of generalization error. -- ALGLIB -- Copyright 19.02.2009 by Bochkanov Sergey *************************************************************************/ public static void dfbuildrandomdecisionforest(ref double[,] xy, int npoints, int nvars, int nclasses, int ntrees, double r, ref int info, ref decisionforest df, ref dfreport rep) { int samplesize = 0; if( (double)(r)<=(double)(0) | (double)(r)>(double)(1) ) { info = -1; return; } samplesize = Math.Max((int)Math.Round(r*npoints), 1); dfbuildinternal(ref xy, npoints, nvars, nclasses, ntrees, samplesize, Math.Max(nvars/2, 1), dfusestrongsplits+dfuseevs, ref info, ref df, ref rep); } public static void dfbuildinternal(ref double[,] xy, int npoints, int nvars, int nclasses, int ntrees, int samplesize, int nfeatures, int flags, ref int info, ref decisionforest df, ref dfreport rep) { int i = 0; int j = 0; int k = 0; int tmpi = 0; int lasttreeoffs = 0; int offs = 0; int ooboffs = 0; int treesize = 0; int nvarsinpool = 0; bool useevs = new bool(); dfinternalbuffers bufs = new dfinternalbuffers(); int[] permbuf = new int[0]; double[] oobbuf = new double[0]; int[] oobcntbuf = new int[0]; double[,] xys = new double[0,0]; double[] x = new double[0]; double[] y = new double[0]; int oobcnt = 0; int oobrelcnt = 0; double v = 0; double vmin = 0; double vmax = 0; bool bflag = new bool(); int i_ = 0; int i1_ = 0; // // Test for inputs // if( npoints<1 | samplesize<1 | samplesize>npoints | nvars<1 | nclasses<1 | ntrees<1 | nfeatures<1 ) { info = -1; return; } if( nclasses>1 ) { for(i=0; i<=npoints-1; i++) { if( (int)Math.Round(xy[i,nvars])<0 | (int)Math.Round(xy[i,nvars])>=nclasses ) { info = -2; return; } } } info = 1; // // Flags // useevs = flags/dfuseevs%2!=0; // // Allocate data, prepare header // treesize = 1+innernodewidth*(samplesize-1)+leafnodewidth*samplesize; permbuf = new int[npoints-1+1]; bufs.treebuf = new double[treesize-1+1]; bufs.idxbuf = new int[npoints-1+1]; bufs.tmpbufr = new double[npoints-1+1]; bufs.tmpbufr2 = new double[npoints-1+1]; bufs.tmpbufi = new int[npoints-1+1]; bufs.varpool = new int[nvars-1+1]; bufs.evsbin = new bool[nvars-1+1]; bufs.evssplits = new double[nvars-1+1]; bufs.classibuf = new int[2*nclasses-1+1]; oobbuf = new double[nclasses*npoints-1+1]; oobcntbuf = new int[npoints-1+1]; df.trees = new double[ntrees*treesize-1+1]; xys = new double[samplesize-1+1, nvars+1]; x = new double[nvars-1+1]; y = new double[nclasses-1+1]; for(i=0; i<=npoints-1; i++) { permbuf[i] = i; } for(i=0; i<=npoints*nclasses-1; i++) { oobbuf[i] = 0; } for(i=0; i<=npoints-1; i++) { oobcntbuf[i] = 0; } // // Prepare variable pool and EVS (extended variable selection/splitting) buffers // (whether EVS is turned on or not): // 1. detect binary variables and pre-calculate splits for them // 2. detect variables with non-distinct values and exclude them from pool // for(i=0; i<=nvars-1; i++) { bufs.varpool[i] = i; } nvarsinpool = nvars; if( useevs ) { for(j=0; j<=nvars-1; j++) { vmin = xy[0,j]; vmax = vmin; for(i=0; i<=npoints-1; i++) { v = xy[i,j]; vmin = Math.Min(vmin, v); vmax = Math.Max(vmax, v); } if( (double)(vmin)==(double)(vmax) ) { // // exclude variable from pool // bufs.varpool[j] = bufs.varpool[nvarsinpool-1]; bufs.varpool[nvarsinpool-1] = -1; nvarsinpool = nvarsinpool-1; continue; } bflag = false; for(i=0; i<=npoints-1; i++) { v = xy[i,j]; if( (double)(v)!=(double)(vmin) & (double)(v)!=(double)(vmax) ) { bflag = true; break; } } if( bflag ) { // // non-binary variable // bufs.evsbin[j] = false; } else { // // Prepare // bufs.evsbin[j] = true; bufs.evssplits[j] = 0.5*(vmin+vmax); if( (double)(bufs.evssplits[j])<=(double)(vmin) ) { bufs.evssplits[j] = vmax; } } } } // // RANDOM FOREST FORMAT // W[0] - size of array // W[1] - version number // W[2] - NVars // W[3] - NClasses (1 for regression) // W[4] - NTrees // W[5] - trees offset // // // TREE FORMAT // W[Offs] - size of sub-array // node info: // W[K+0] - variable number (-1 for leaf mode) // W[K+1] - threshold (class/value for leaf node) // W[K+2] - ">=" branch index (absent for leaf node) // // df.nvars = nvars; df.nclasses = nclasses; df.ntrees = ntrees; // // Build forest // offs = 0; for(i=0; i<=ntrees-1; i++) { // // Prepare sample // for(k=0; k<=samplesize-1; k++) { j = k+AP.Math.RandomInteger(npoints-k); tmpi = permbuf[k]; permbuf[k] = permbuf[j]; permbuf[j] = tmpi; j = permbuf[k]; for(i_=0; i_<=nvars;i_++) { xys[k,i_] = xy[j,i_]; } } // // build tree, copy // dfbuildtree(ref xys, samplesize, nvars, nclasses, nfeatures, nvarsinpool, flags, ref bufs); j = (int)Math.Round(bufs.treebuf[0]); i1_ = (0) - (offs); for(i_=offs; i_<=offs+j-1;i_++) { df.trees[i_] = bufs.treebuf[i_+i1_]; } lasttreeoffs = offs; offs = offs+j; // // OOB estimates // for(k=samplesize; k<=npoints-1; k++) { for(j=0; j<=nclasses-1; j++) { y[j] = 0; } j = permbuf[k]; for(i_=0; i_<=nvars-1;i_++) { x[i_] = xy[j,i_]; } dfprocessinternal(ref df, lasttreeoffs, ref x, ref y); i1_ = (0) - (j*nclasses); for(i_=j*nclasses; i_<=(j+1)*nclasses-1;i_++) { oobbuf[i_] = oobbuf[i_] + y[i_+i1_]; } oobcntbuf[j] = oobcntbuf[j]+1; } } df.bufsize = offs; // // Normalize OOB results // for(i=0; i<=npoints-1; i++) { if( oobcntbuf[i]!=0 ) { v = (double)(1)/(double)(oobcntbuf[i]); for(i_=i*nclasses; i_<=i*nclasses+nclasses-1;i_++) { oobbuf[i_] = v*oobbuf[i_]; } } } // // Calculate training set estimates // rep.relclserror = dfrelclserror(ref df, ref xy, npoints); rep.avgce = dfavgce(ref df, ref xy, npoints); rep.rmserror = dfrmserror(ref df, ref xy, npoints); rep.avgerror = dfavgerror(ref df, ref xy, npoints); rep.avgrelerror = dfavgrelerror(ref df, ref xy, npoints); // // Calculate OOB estimates. // rep.oobrelclserror = 0; rep.oobavgce = 0; rep.oobrmserror = 0; rep.oobavgerror = 0; rep.oobavgrelerror = 0; oobcnt = 0; oobrelcnt = 0; for(i=0; i<=npoints-1; i++) { if( oobcntbuf[i]!=0 ) { ooboffs = i*nclasses; if( nclasses>1 ) { // // classification-specific code // k = (int)Math.Round(xy[i,nvars]); tmpi = 0; for(j=1; j<=nclasses-1; j++) { if( (double)(oobbuf[ooboffs+j])>(double)(oobbuf[ooboffs+tmpi]) ) { tmpi = j; } } if( tmpi!=k ) { rep.oobrelclserror = rep.oobrelclserror+1; } if( (double)(oobbuf[ooboffs+k])!=(double)(0) ) { rep.oobavgce = rep.oobavgce-Math.Log(oobbuf[ooboffs+k]); } else { rep.oobavgce = rep.oobavgce-Math.Log(AP.Math.MinRealNumber); } for(j=0; j<=nclasses-1; j++) { if( j==k ) { rep.oobrmserror = rep.oobrmserror+AP.Math.Sqr(oobbuf[ooboffs+j]-1); rep.oobavgerror = rep.oobavgerror+Math.Abs(oobbuf[ooboffs+j]-1); rep.oobavgrelerror = rep.oobavgrelerror+Math.Abs(oobbuf[ooboffs+j]-1); oobrelcnt = oobrelcnt+1; } else { rep.oobrmserror = rep.oobrmserror+AP.Math.Sqr(oobbuf[ooboffs+j]); rep.oobavgerror = rep.oobavgerror+Math.Abs(oobbuf[ooboffs+j]); } } } else { // // regression-specific code // rep.oobrmserror = rep.oobrmserror+AP.Math.Sqr(oobbuf[ooboffs]-xy[i,nvars]); rep.oobavgerror = rep.oobavgerror+Math.Abs(oobbuf[ooboffs]-xy[i,nvars]); if( (double)(xy[i,nvars])!=(double)(0) ) { rep.oobavgrelerror = rep.oobavgrelerror+Math.Abs((oobbuf[ooboffs]-xy[i,nvars])/xy[i,nvars]); oobrelcnt = oobrelcnt+1; } } // // update OOB estimates count. // oobcnt = oobcnt+1; } } if( oobcnt>0 ) { rep.oobrelclserror = rep.oobrelclserror/oobcnt; rep.oobavgce = rep.oobavgce/oobcnt; rep.oobrmserror = Math.Sqrt(rep.oobrmserror/(oobcnt*nclasses)); rep.oobavgerror = rep.oobavgerror/(oobcnt*nclasses); if( oobrelcnt>0 ) { rep.oobavgrelerror = rep.oobavgrelerror/oobrelcnt; } } } /************************************************************************* Procesing INPUT PARAMETERS: DF - decision forest model X - input vector, array[0..NVars-1]. OUTPUT PARAMETERS: Y - result. Regression estimate when solving regression task, vector of posterior probabilities for classification task. Subroutine does not allocate memory for this vector, it is responsibility of a caller to allocate it. Array must be at least [0..NClasses-1]. -- ALGLIB -- Copyright 16.02.2009 by Bochkanov Sergey *************************************************************************/ public static void dfprocess(ref decisionforest df, ref double[] x, ref double[] y) { int offs = 0; int i = 0; double v = 0; int i_ = 0; // // Proceed // offs = 0; for(i=0; i<=df.nclasses-1; i++) { y[i] = 0; } for(i=0; i<=df.ntrees-1; i++) { // // Process basic tree // dfprocessinternal(ref df, offs, ref x, ref y); // // Next tree // offs = offs+(int)Math.Round(df.trees[offs]); } v = (double)(1)/(double)(df.ntrees); for(i_=0; i_<=df.nclasses-1;i_++) { y[i_] = v*y[i_]; } } /************************************************************************* Relative classification error on the test set INPUT PARAMETERS: DF - decision forest model XY - test set NPoints - test set size RESULT: percent of incorrectly classified cases. Zero if model solves regression task. -- ALGLIB -- Copyright 16.02.2009 by Bochkanov Sergey *************************************************************************/ public static double dfrelclserror(ref decisionforest df, ref double[,] xy, int npoints) { double result = 0; result = (double)(dfclserror(ref df, ref xy, npoints))/(double)(npoints); return result; } /************************************************************************* Average cross-entropy (in bits per element) on the test set INPUT PARAMETERS: DF - decision forest model XY - test set NPoints - test set size RESULT: CrossEntropy/(NPoints*LN(2)). Zero if model solves regression task. -- ALGLIB -- Copyright 16.02.2009 by Bochkanov Sergey *************************************************************************/ public static double dfavgce(ref decisionforest df, ref double[,] xy, int npoints) { double result = 0; double[] x = new double[0]; double[] y = new double[0]; int i = 0; int j = 0; int k = 0; int tmpi = 0; int i_ = 0; x = new double[df.nvars-1+1]; y = new double[df.nclasses-1+1]; result = 0; for(i=0; i<=npoints-1; i++) { for(i_=0; i_<=df.nvars-1;i_++) { x[i_] = xy[i,i_]; } dfprocess(ref df, ref x, ref y); if( df.nclasses>1 ) { // // classification-specific code // k = (int)Math.Round(xy[i,df.nvars]); tmpi = 0; for(j=1; j<=df.nclasses-1; j++) { if( (double)(y[j])>(double)(y[tmpi]) ) { tmpi = j; } } if( (double)(y[k])!=(double)(0) ) { result = result-Math.Log(y[k]); } else { result = result-Math.Log(AP.Math.MinRealNumber); } } } result = result/npoints; return result; } /************************************************************************* RMS error on the test set INPUT PARAMETERS: DF - decision forest model XY - test set NPoints - test set size RESULT: root mean square error. Its meaning for regression task is obvious. As for classification task, RMS error means error when estimating posterior probabilities. -- ALGLIB -- Copyright 16.02.2009 by Bochkanov Sergey *************************************************************************/ public static double dfrmserror(ref decisionforest df, ref double[,] xy, int npoints) { double result = 0; double[] x = new double[0]; double[] y = new double[0]; int i = 0; int j = 0; int k = 0; int tmpi = 0; int i_ = 0; x = new double[df.nvars-1+1]; y = new double[df.nclasses-1+1]; result = 0; for(i=0; i<=npoints-1; i++) { for(i_=0; i_<=df.nvars-1;i_++) { x[i_] = xy[i,i_]; } dfprocess(ref df, ref x, ref y); if( df.nclasses>1 ) { // // classification-specific code // k = (int)Math.Round(xy[i,df.nvars]); tmpi = 0; for(j=1; j<=df.nclasses-1; j++) { if( (double)(y[j])>(double)(y[tmpi]) ) { tmpi = j; } } for(j=0; j<=df.nclasses-1; j++) { if( j==k ) { result = result+AP.Math.Sqr(y[j]-1); } else { result = result+AP.Math.Sqr(y[j]); } } } else { // // regression-specific code // result = result+AP.Math.Sqr(y[0]-xy[i,df.nvars]); } } result = Math.Sqrt(result/(npoints*df.nclasses)); return result; } /************************************************************************* Average error on the test set INPUT PARAMETERS: DF - decision forest model XY - test set NPoints - test set size RESULT: Its meaning for regression task is obvious. As for classification task, it means average error when estimating posterior probabilities. -- ALGLIB -- Copyright 16.02.2009 by Bochkanov Sergey *************************************************************************/ public static double dfavgerror(ref decisionforest df, ref double[,] xy, int npoints) { double result = 0; double[] x = new double[0]; double[] y = new double[0]; int i = 0; int j = 0; int k = 0; int i_ = 0; x = new double[df.nvars-1+1]; y = new double[df.nclasses-1+1]; result = 0; for(i=0; i<=npoints-1; i++) { for(i_=0; i_<=df.nvars-1;i_++) { x[i_] = xy[i,i_]; } dfprocess(ref df, ref x, ref y); if( df.nclasses>1 ) { // // classification-specific code // k = (int)Math.Round(xy[i,df.nvars]); for(j=0; j<=df.nclasses-1; j++) { if( j==k ) { result = result+Math.Abs(y[j]-1); } else { result = result+Math.Abs(y[j]); } } } else { // // regression-specific code // result = result+Math.Abs(y[0]-xy[i,df.nvars]); } } result = result/(npoints*df.nclasses); return result; } /************************************************************************* Average relative error on the test set INPUT PARAMETERS: DF - decision forest model XY - test set NPoints - test set size RESULT: Its meaning for regression task is obvious. As for classification task, it means average relative error when estimating posterior probability of belonging to the correct class. -- ALGLIB -- Copyright 16.02.2009 by Bochkanov Sergey *************************************************************************/ public static double dfavgrelerror(ref decisionforest df, ref double[,] xy, int npoints) { double result = 0; double[] x = new double[0]; double[] y = new double[0]; int relcnt = 0; int i = 0; int j = 0; int k = 0; int i_ = 0; x = new double[df.nvars-1+1]; y = new double[df.nclasses-1+1]; result = 0; relcnt = 0; for(i=0; i<=npoints-1; i++) { for(i_=0; i_<=df.nvars-1;i_++) { x[i_] = xy[i,i_]; } dfprocess(ref df, ref x, ref y); if( df.nclasses>1 ) { // // classification-specific code // k = (int)Math.Round(xy[i,df.nvars]); for(j=0; j<=df.nclasses-1; j++) { if( j==k ) { result = result+Math.Abs(y[j]-1); relcnt = relcnt+1; } } } else { // // regression-specific code // if( (double)(xy[i,df.nvars])!=(double)(0) ) { result = result+Math.Abs((y[0]-xy[i,df.nvars])/xy[i,df.nvars]); relcnt = relcnt+1; } } } if( relcnt>0 ) { result = result/relcnt; } return result; } /************************************************************************* Copying of DecisionForest strucure INPUT PARAMETERS: DF1 - original OUTPUT PARAMETERS: DF2 - copy -- ALGLIB -- Copyright 13.02.2009 by Bochkanov Sergey *************************************************************************/ public static void dfcopy(ref decisionforest df1, ref decisionforest df2) { int i_ = 0; df2.nvars = df1.nvars; df2.nclasses = df1.nclasses; df2.ntrees = df1.ntrees; df2.bufsize = df1.bufsize; df2.trees = new double[df1.bufsize-1+1]; for(i_=0; i_<=df1.bufsize-1;i_++) { df2.trees[i_] = df1.trees[i_]; } } /************************************************************************* Serialization of DecisionForest strucure INPUT PARAMETERS: DF - original OUTPUT PARAMETERS: RA - array of real numbers which stores decision forest, array[0..RLen-1] RLen - RA lenght -- ALGLIB -- Copyright 13.02.2009 by Bochkanov Sergey *************************************************************************/ public static void dfserialize(ref decisionforest df, ref double[] ra, ref int rlen) { int i_ = 0; int i1_ = 0; ra = new double[df.bufsize+5-1+1]; ra[0] = dfvnum; ra[1] = df.nvars; ra[2] = df.nclasses; ra[3] = df.ntrees; ra[4] = df.bufsize; i1_ = (0) - (5); for(i_=5; i_<=5+df.bufsize-1;i_++) { ra[i_] = df.trees[i_+i1_]; } rlen = 5+df.bufsize; } /************************************************************************* Unserialization of DecisionForest strucure INPUT PARAMETERS: RA - real array which stores decision forest OUTPUT PARAMETERS: DF - restored structure -- ALGLIB -- Copyright 13.02.2009 by Bochkanov Sergey *************************************************************************/ public static void dfunserialize(ref double[] ra, ref decisionforest df) { int i_ = 0; int i1_ = 0; System.Diagnostics.Debug.Assert((int)Math.Round(ra[0])==dfvnum, "DFUnserialize: incorrect array!"); df.nvars = (int)Math.Round(ra[1]); df.nclasses = (int)Math.Round(ra[2]); df.ntrees = (int)Math.Round(ra[3]); df.bufsize = (int)Math.Round(ra[4]); df.trees = new double[df.bufsize-1+1]; i1_ = (5) - (0); for(i_=0; i_<=df.bufsize-1;i_++) { df.trees[i_] = ra[i_+i1_]; } } /************************************************************************* Classification error *************************************************************************/ private static int dfclserror(ref decisionforest df, ref double[,] xy, int npoints) { int result = 0; double[] x = new double[0]; double[] y = new double[0]; int i = 0; int j = 0; int k = 0; int tmpi = 0; int i_ = 0; if( df.nclasses<=1 ) { result = 0; return result; } x = new double[df.nvars-1+1]; y = new double[df.nclasses-1+1]; result = 0; for(i=0; i<=npoints-1; i++) { for(i_=0; i_<=df.nvars-1;i_++) { x[i_] = xy[i,i_]; } dfprocess(ref df, ref x, ref y); k = (int)Math.Round(xy[i,df.nvars]); tmpi = 0; for(j=1; j<=df.nclasses-1; j++) { if( (double)(y[j])>(double)(y[tmpi]) ) { tmpi = j; } } if( tmpi!=k ) { result = result+1; } } return result; } /************************************************************************* Internal subroutine for processing one decision tree starting at Offs *************************************************************************/ private static void dfprocessinternal(ref decisionforest df, int offs, ref double[] x, ref double[] y) { int k = 0; int idx = 0; // // Set pointer to the root // k = offs+1; // // Navigate through the tree // while( true ) { if( (double)(df.trees[k])==(double)(-1) ) { if( df.nclasses==1 ) { y[0] = y[0]+df.trees[k+1]; } else { idx = (int)Math.Round(df.trees[k+1]); y[idx] = y[idx]+1; } break; } if( (double)(x[(int)Math.Round(df.trees[k])])<(double)(df.trees[k+1]) ) { k = k+innernodewidth; } else { k = offs+(int)Math.Round(df.trees[k+2]); } } } /************************************************************************* Builds one decision tree. Just a wrapper for the DFBuildTreeRec. *************************************************************************/ private static void dfbuildtree(ref double[,] xy, int npoints, int nvars, int nclasses, int nfeatures, int nvarsinpool, int flags, ref dfinternalbuffers bufs) { int numprocessed = 0; int i = 0; System.Diagnostics.Debug.Assert(npoints>0); // // Prepare IdxBuf. It stores indices of the training set elements. // When training set is being split, contents of IdxBuf is // correspondingly reordered so we can know which elements belong // to which branch of decision tree. // for(i=0; i<=npoints-1; i++) { bufs.idxbuf[i] = i; } // // Recursive procedure // numprocessed = 1; dfbuildtreerec(ref xy, npoints, nvars, nclasses, nfeatures, nvarsinpool, flags, ref numprocessed, 0, npoints-1, ref bufs); bufs.treebuf[0] = numprocessed; } /************************************************************************* Builds one decision tree (internal recursive subroutine) Parameters: TreeBuf - large enough array, at least TreeSize IdxBuf - at least NPoints elements TmpBufR - at least NPoints TmpBufR2 - at least NPoints TmpBufI - at least NPoints TmpBufI2 - at least NPoints+1 *************************************************************************/ private static void dfbuildtreerec(ref double[,] xy, int npoints, int nvars, int nclasses, int nfeatures, int nvarsinpool, int flags, ref int numprocessed, int idx1, int idx2, ref dfinternalbuffers bufs) { int i = 0; int j = 0; int k = 0; bool bflag = new bool(); int i1 = 0; int i2 = 0; int info = 0; double sl = 0; double sr = 0; double w = 0; int idxbest = 0; double ebest = 0; double tbest = 0; int varcur = 0; double s = 0; double v = 0; double v1 = 0; double v2 = 0; double threshold = 0; int oldnp = 0; double currms = 0; bool useevs = new bool(); System.Diagnostics.Debug.Assert(npoints>0); System.Diagnostics.Debug.Assert(idx2>=idx1); useevs = flags/dfuseevs%2!=0; // // Leaf node // if( idx2==idx1 ) { bufs.treebuf[numprocessed] = -1; bufs.treebuf[numprocessed+1] = xy[bufs.idxbuf[idx1],nvars]; numprocessed = numprocessed+leafnodewidth; return; } // // Non-leaf node. // Select random variable, prepare split: // 1. prepare default solution - no splitting, class at random // 2. investigate possible splits, compare with default/best // idxbest = -1; if( nclasses>1 ) { // // default solution for classification // for(i=0; i<=nclasses-1; i++) { bufs.classibuf[i] = 0; } s = idx2-idx1+1; for(i=idx1; i<=idx2; i++) { j = (int)Math.Round(xy[bufs.idxbuf[i],nvars]); bufs.classibuf[j] = bufs.classibuf[j]+1; } ebest = 0; for(i=0; i<=nclasses-1; i++) { ebest = ebest+bufs.classibuf[i]*AP.Math.Sqr(1-bufs.classibuf[i]/s)+(s-bufs.classibuf[i])*AP.Math.Sqr(bufs.classibuf[i]/s); } ebest = Math.Sqrt(ebest/(nclasses*(idx2-idx1+1))); } else { // // default solution for regression // v = 0; for(i=idx1; i<=idx2; i++) { v = v+xy[bufs.idxbuf[i],nvars]; } v = v/(idx2-idx1+1); ebest = 0; for(i=idx1; i<=idx2; i++) { ebest = ebest+AP.Math.Sqr(xy[bufs.idxbuf[i],nvars]-v); } ebest = Math.Sqrt(ebest/(idx2-idx1+1)); } i = 0; while( i<=Math.Min(nfeatures, nvarsinpool)-1 ) { // // select variables from pool // j = i+AP.Math.RandomInteger(nvarsinpool-i); k = bufs.varpool[i]; bufs.varpool[i] = bufs.varpool[j]; bufs.varpool[j] = k; varcur = bufs.varpool[i]; // // load variable values to working array // // apply EVS preprocessing: if all variable values are same, // variable is excluded from pool. // // This is necessary for binary pre-splits (see later) to work. // for(j=idx1; j<=idx2; j++) { bufs.tmpbufr[j-idx1] = xy[bufs.idxbuf[j],varcur]; } if( useevs ) { bflag = false; v = bufs.tmpbufr[0]; for(j=0; j<=idx2-idx1; j++) { if( (double)(bufs.tmpbufr[j])!=(double)(v) ) { bflag = true; break; } } if( !bflag ) { // // exclude variable from pool, // go to the next iteration. // I is not increased. // k = bufs.varpool[i]; bufs.varpool[i] = bufs.varpool[nvarsinpool-1]; bufs.varpool[nvarsinpool-1] = k; nvarsinpool = nvarsinpool-1; continue; } } // // load labels to working array // if( nclasses>1 ) { for(j=idx1; j<=idx2; j++) { bufs.tmpbufi[j-idx1] = (int)Math.Round(xy[bufs.idxbuf[j],nvars]); } } else { for(j=idx1; j<=idx2; j++) { bufs.tmpbufr2[j-idx1] = xy[bufs.idxbuf[j],nvars]; } } // // calculate split // if( useevs & bufs.evsbin[varcur] ) { // // Pre-calculated splits for binary variables. // Threshold is already known, just calculate RMS error // threshold = bufs.evssplits[varcur]; if( nclasses>1 ) { // // classification-specific code // for(j=0; j<=2*nclasses-1; j++) { bufs.classibuf[j] = 0; } sl = 0; sr = 0; for(j=0; j<=idx2-idx1; j++) { k = bufs.tmpbufi[j]; if( (double)(bufs.tmpbufr[j])<(double)(threshold) ) { bufs.classibuf[k] = bufs.classibuf[k]+1; sl = sl+1; } else { bufs.classibuf[k+nclasses] = bufs.classibuf[k+nclasses]+1; sr = sr+1; } } System.Diagnostics.Debug.Assert((double)(sl)!=(double)(0) & (double)(sr)!=(double)(0), "DFBuildTreeRec: something strange!"); currms = 0; for(j=0; j<=nclasses-1; j++) { w = bufs.classibuf[j]; currms = currms+w*AP.Math.Sqr(w/sl-1); currms = currms+(sl-w)*AP.Math.Sqr(w/sl); w = bufs.classibuf[nclasses+j]; currms = currms+w*AP.Math.Sqr(w/sr-1); currms = currms+(sr-w)*AP.Math.Sqr(w/sr); } currms = Math.Sqrt(currms/(nclasses*(idx2-idx1+1))); } else { // // regression-specific code // sl = 0; sr = 0; v1 = 0; v2 = 0; for(j=0; j<=idx2-idx1; j++) { if( (double)(bufs.tmpbufr[j])<(double)(threshold) ) { v1 = v1+bufs.tmpbufr2[j]; sl = sl+1; } else { v2 = v2+bufs.tmpbufr2[j]; sr = sr+1; } } System.Diagnostics.Debug.Assert((double)(sl)!=(double)(0) & (double)(sr)!=(double)(0), "DFBuildTreeRec: something strange!"); v1 = v1/sl; v2 = v2/sr; currms = 0; for(j=0; j<=idx2-idx1; j++) { if( (double)(bufs.tmpbufr[j])<(double)(threshold) ) { currms = currms+AP.Math.Sqr(v1-bufs.tmpbufr2[j]); } else { currms = currms+AP.Math.Sqr(v2-bufs.tmpbufr2[j]); } } currms = Math.Sqrt(currms/(idx2-idx1+1)); } info = 1; } else { // // Generic splits // if( nclasses>1 ) { dfsplitc(ref bufs.tmpbufr, ref bufs.tmpbufi, ref bufs.classibuf, idx2-idx1+1, nclasses, dfusestrongsplits, ref info, ref threshold, ref currms); } else { dfsplitr(ref bufs.tmpbufr, ref bufs.tmpbufr2, idx2-idx1+1, dfusestrongsplits, ref info, ref threshold, ref currms); } } if( info>0 ) { if( (double)(currms)<=(double)(ebest) ) { ebest = currms; idxbest = varcur; tbest = threshold; } } // // Next iteration // i = i+1; } // // to split or not to split // if( idxbest<0 ) { // // All values are same, cannot split. // bufs.treebuf[numprocessed] = -1; if( nclasses>1 ) { // // Select random class label (randomness allows us to // approximate distribution of the classes) // bufs.treebuf[numprocessed+1] = (int)Math.Round(xy[bufs.idxbuf[idx1+AP.Math.RandomInteger(idx2-idx1+1)],nvars]); } else { // // Select average (for regression task). // v = 0; for(i=idx1; i<=idx2; i++) { v = v+xy[bufs.idxbuf[i],nvars]/(idx2-idx1+1); } bufs.treebuf[numprocessed+1] = v; } numprocessed = numprocessed+leafnodewidth; } else { // // we can split // bufs.treebuf[numprocessed] = idxbest; bufs.treebuf[numprocessed+1] = tbest; i1 = idx1; i2 = idx2; while( i1<=i2 ) { // // Reorder indices so that left partition is in [Idx1..I1-1], // and right partition is in [I2+1..Idx2] // if( (double)(xy[bufs.idxbuf[i1],idxbest])<(double)(tbest) ) { i1 = i1+1; continue; } if( (double)(xy[bufs.idxbuf[i2],idxbest])>=(double)(tbest) ) { i2 = i2-1; continue; } j = bufs.idxbuf[i1]; bufs.idxbuf[i1] = bufs.idxbuf[i2]; bufs.idxbuf[i2] = j; i1 = i1+1; i2 = i2-1; } oldnp = numprocessed; numprocessed = numprocessed+innernodewidth; dfbuildtreerec(ref xy, npoints, nvars, nclasses, nfeatures, nvarsinpool, flags, ref numprocessed, idx1, i1-1, ref bufs); bufs.treebuf[oldnp+2] = numprocessed; dfbuildtreerec(ref xy, npoints, nvars, nclasses, nfeatures, nvarsinpool, flags, ref numprocessed, i2+1, idx2, ref bufs); } } /************************************************************************* Makes weak split on attribute *************************************************************************/ private static void dfweakspliti(ref double[] x, ref int[] y, int n, int nclasses, ref int info, ref double threshold, ref double e) { int i = 0; int neq = 0; int nless = 0; int ngreater = 0; tsort.tagsortfasti(ref x, ref y, n); if( n%2==1 ) { // // odd number of elements // threshold = x[n/2]; } else { // // even number of elements. // // if two closest to the middle of the array are equal, // we will select one of them (to avoid possible problems with // floating point errors). // we will select halfsum otherwise. // if( (double)(x[n/2-1])==(double)(x[n/2]) ) { threshold = x[n/2-1]; } else { threshold = 0.5*(x[n/2-1]+x[n/2]); } } neq = 0; nless = 0; ngreater = 0; for(i=0; i<=n-1; i++) { if( (double)(x[i])<(double)(threshold) ) { nless = nless+1; } if( (double)(x[i])==(double)(threshold) ) { neq = neq+1; } if( (double)(x[i])>(double)(threshold) ) { ngreater = ngreater+1; } } if( nless==0 & ngreater==0 ) { info = -3; } else { if( neq!=0 ) { if( nless(double)(cursplit) ) { ngreater = ngreater+1; } } System.Diagnostics.Debug.Assert(neq!=0, "DFSplitR: NEq=0, something strange!!!"); if( nless!=0 | ngreater!=0 ) { // // set threshold between two partitions, with // some tweaking to avoid problems with floating point // arithmetics. // // The problem is that when you calculates C = 0.5*(A+B) there // can be no C which lies strictly between A and B (for example, // there is no floating point number which is // greater than 1 and less than 1+eps). In such situations // we choose right side as theshold (remember that // points which lie on threshold falls to the right side). // if( nless(double)(cursplit) ) { ngreater = ngreater+1; } } System.Diagnostics.Debug.Assert(neq!=0, "DFSplitR: NEq=0, something strange!!!"); if( nless!=0 | ngreater!=0 ) { // // set threshold between two partitions, with // some tweaking to avoid problems with floating point // arithmetics. // // The problem is that when you calculates C = 0.5*(A+B) there // can be no C which lies strictly between A and B (for example, // there is no floating point number which is // greater than 1 and less than 1+eps). In such situations // we choose right side as theshold (remember that // points which lie on threshold falls to the right side). // if( nless