1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Text;
|
---|
26 | using System.Threading.Tasks;
|
---|
27 | using HeuristicLab.Analysis;
|
---|
28 | using HeuristicLab.Common;
|
---|
29 | using HeuristicLab.Core;
|
---|
30 | using HeuristicLab.Data;
|
---|
31 | using HeuristicLab.Encodings.BinaryVectorEncoding;
|
---|
32 | using HeuristicLab.Optimization;
|
---|
33 | using HeuristicLab.Parameters;
|
---|
34 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
35 | using HeuristicLab.Random;
|
---|
36 |
|
---|
37 | namespace HeuristicLab.Algorithms.ParameterlessPopulationPyramid {
|
---|
38 | [Item("Parameter-less Population Pyramid", "Binary value optimization algorithm which requires no configuration.")]
|
---|
39 | [StorableClass]
|
---|
40 | [Creatable("Parameterless Population Pyramid")]
|
---|
41 |
|
---|
42 | public class ParameterlessPopulationPyramid : AlgorithmBase {
|
---|
43 | private readonly IRandom random = new MersenneTwister();
|
---|
44 | private List<Population> pyramid;
|
---|
45 | private EvaluationTracker tracker;
|
---|
46 |
|
---|
47 | // Tracks all solutions in Pyramid for quick membership checks
|
---|
48 | private HashSet<bool[]> seen = new HashSet<bool[]>(new EnumerableBoolEqualityComparer());
|
---|
49 |
|
---|
50 | #region ParameterNames
|
---|
51 | private const string MaximumIterationsParameterName = "Maximum Iterations";
|
---|
52 | private const string MaximumEvaluationsParameterName = "Maximum Evaluations";
|
---|
53 | private const string SeedParameterName = "Seed";
|
---|
54 | private const string SetSeedRandomlyParameterName = "SetSeedRandomly";
|
---|
55 | #endregion
|
---|
56 |
|
---|
57 | #region ParameterProperties
|
---|
58 | public IFixedValueParameter<IntValue> MaximumIterationsParameter {
|
---|
59 | get { return (IFixedValueParameter<IntValue>)Parameters[MaximumIterationsParameterName]; }
|
---|
60 | }
|
---|
61 | public IFixedValueParameter<IntValue> MaximumEvaluationsParameter {
|
---|
62 | get { return (IFixedValueParameter<IntValue>)Parameters[MaximumEvaluationsParameterName]; }
|
---|
63 | }
|
---|
64 | public IFixedValueParameter<IntValue> SeedParameter {
|
---|
65 | get { return (IFixedValueParameter<IntValue>)Parameters[SeedParameterName]; }
|
---|
66 | }
|
---|
67 | public FixedValueParameter<BoolValue> SetSeedRandomlyParameter {
|
---|
68 | get { return (FixedValueParameter<BoolValue>)Parameters[SetSeedRandomlyParameterName]; }
|
---|
69 | }
|
---|
70 | #endregion
|
---|
71 |
|
---|
72 | #region Properties
|
---|
73 | public int MaximumIterations {
|
---|
74 | get { return MaximumIterationsParameter.Value.Value; }
|
---|
75 | set { MaximumIterationsParameter.Value.Value = value; }
|
---|
76 | }
|
---|
77 |
|
---|
78 | public int MaximumEvaluations {
|
---|
79 | get { return MaximumEvaluationsParameter.Value.Value; }
|
---|
80 | set { MaximumEvaluationsParameter.Value.Value = value; }
|
---|
81 | }
|
---|
82 |
|
---|
83 | public int Seed {
|
---|
84 | get { return SeedParameter.Value.Value; }
|
---|
85 | set { SeedParameter.Value.Value = value; }
|
---|
86 | }
|
---|
87 |
|
---|
88 | public bool SetSeedRandomly {
|
---|
89 | get { return SetSeedRandomlyParameter.Value.Value; }
|
---|
90 | set { SetSeedRandomlyParameter.Value.Value = value; }
|
---|
91 | }
|
---|
92 | #endregion
|
---|
93 |
|
---|
94 | #region ResultsProperties
|
---|
95 | private double ResultsBestQuality {
|
---|
96 | get { return ((DoubleValue)Results["Best Quality"].Value).Value; }
|
---|
97 | set { ((DoubleValue)Results["Best Quality"].Value).Value = value; }
|
---|
98 | }
|
---|
99 |
|
---|
100 | private BinaryVector ResultsBestSolution {
|
---|
101 | get { return (BinaryVector)Results["Best Solution"].Value; }
|
---|
102 | set { Results["Best Solution"].Value = value; }
|
---|
103 | }
|
---|
104 |
|
---|
105 | private int ResultsBestFoundOnEvaluation {
|
---|
106 | get { return ((IntValue)Results["Evaluation Best Solution Was Found"].Value).Value; }
|
---|
107 | set { ((IntValue)Results["Evaluation Best Solution Was Found"].Value).Value = value; }
|
---|
108 | }
|
---|
109 |
|
---|
110 | private int ResultsEvaluations {
|
---|
111 | get { return ((IntValue)Results["Evaluations"].Value).Value; }
|
---|
112 | set { ((IntValue)Results["Evaluations"].Value).Value = value; }
|
---|
113 | }
|
---|
114 | private int ResultsIterations {
|
---|
115 | get { return ((IntValue)Results["Iterations"].Value).Value; }
|
---|
116 | set { ((IntValue)Results["Iterations"].Value).Value = value; }
|
---|
117 | }
|
---|
118 |
|
---|
119 | private DataTable ResultsQualities {
|
---|
120 | get { return ((DataTable)Results["Qualities"].Value); }
|
---|
121 | }
|
---|
122 | private DataRow ResultsQualitiesBest {
|
---|
123 | get { return ResultsQualities.Rows["Best Quality"]; }
|
---|
124 | }
|
---|
125 |
|
---|
126 | private DataRow ResultsQualitiesIteration {
|
---|
127 | get { return ResultsQualities.Rows["Iteration Quality"]; }
|
---|
128 | }
|
---|
129 | #endregion
|
---|
130 |
|
---|
131 | [StorableConstructor]
|
---|
132 | protected ParameterlessPopulationPyramid(bool deserializing) : base(deserializing) { }
|
---|
133 |
|
---|
134 | protected ParameterlessPopulationPyramid(ParameterlessPopulationPyramid original, Cloner cloner)
|
---|
135 | : base(original, cloner) {
|
---|
136 | }
|
---|
137 |
|
---|
138 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
139 | return new ParameterlessPopulationPyramid(this, cloner);
|
---|
140 | }
|
---|
141 |
|
---|
142 | public ParameterlessPopulationPyramid() {
|
---|
143 | Parameters.Add(new FixedValueParameter<IntValue>(MaximumIterationsParameterName, "", new IntValue(Int32.MaxValue)));
|
---|
144 | Parameters.Add(new FixedValueParameter<IntValue>(MaximumEvaluationsParameterName, "", new IntValue(10000)));
|
---|
145 | Parameters.Add(new FixedValueParameter<IntValue>(SeedParameterName, "The random seed used to initialize the new pseudo random number generator.", new IntValue(0)));
|
---|
146 | Parameters.Add(new FixedValueParameter<BoolValue>(SetSeedRandomlyParameterName, "True if the random seed should be set to a random value, otherwise false.", new BoolValue(true)));
|
---|
147 | }
|
---|
148 |
|
---|
149 | private void AddIfUnique(bool[] solution, int level) {
|
---|
150 | // Don't add things you have seen
|
---|
151 | if (seen.Contains(solution)) return;
|
---|
152 | if (level == pyramid.Count) {
|
---|
153 | pyramid.Add(new Population(tracker.Length, random));
|
---|
154 | }
|
---|
155 | var copied = (bool[])solution.Clone();
|
---|
156 | pyramid[level].Add(copied);
|
---|
157 | seen.Add(copied);
|
---|
158 | }
|
---|
159 |
|
---|
160 | // In the GECCO paper, Figure 1
|
---|
161 | private double iterate() {
|
---|
162 | // Create a random solution
|
---|
163 | bool[] solution = new bool[tracker.Length];
|
---|
164 | for (int i = 0; i < solution.Length; i++) {
|
---|
165 | solution[i] = random.Next(2) == 1;
|
---|
166 | }
|
---|
167 | double fitness = tracker.Evaluate(solution);
|
---|
168 | fitness = HillClimber.ImproveToLocalOptimum(tracker, solution, fitness, random);
|
---|
169 | AddIfUnique(solution, 0);
|
---|
170 |
|
---|
171 | for (int level = 0; level < pyramid.Count; level++) {
|
---|
172 | var current = pyramid[level];
|
---|
173 | double newFitness = LinkageCrossover.ImproveUsingTree(current.Tree, current.Solutions, solution, fitness, tracker, random);
|
---|
174 | // add it to the next level if its a strict fitness improvement
|
---|
175 | if (tracker.IsBetter(newFitness, fitness)) {
|
---|
176 | fitness = newFitness;
|
---|
177 | AddIfUnique(solution, level + 1);
|
---|
178 | }
|
---|
179 | }
|
---|
180 | return fitness;
|
---|
181 | }
|
---|
182 |
|
---|
183 | protected override void Run() {
|
---|
184 | // Set up the algorithm
|
---|
185 | if (SetSeedRandomly) Seed = new System.Random().Next();
|
---|
186 | pyramid = new List<Population>();
|
---|
187 | seen.Clear();
|
---|
188 | random.Reset(Seed);
|
---|
189 | tracker = new EvaluationTracker(Problem, MaximumEvaluations);
|
---|
190 |
|
---|
191 | // Set up the results display
|
---|
192 | Results.Add(new Result("Iterations", new IntValue(0)));
|
---|
193 | Results.Add(new Result("Evaluations", new IntValue(0)));
|
---|
194 | Results.Add(new Result("Best Solution", new BinaryVector(tracker.BestSolution)));
|
---|
195 | Results.Add(new Result("Best Quality", new DoubleValue(tracker.BestQuality)));
|
---|
196 | Results.Add(new Result("Evaluation Best Solution Was Found", new IntValue(tracker.BestFoundOnEvaluation)));
|
---|
197 | var table = new DataTable("Qualities");
|
---|
198 | table.Rows.Add(new DataRow("Best Quality"));
|
---|
199 | var iterationRows = new DataRow("Iteration Quality");
|
---|
200 | iterationRows.VisualProperties.LineStyle = DataRowVisualProperties.DataRowLineStyle.Dot;
|
---|
201 | table.Rows.Add(iterationRows);
|
---|
202 | Results.Add(new Result("Qualities", table));
|
---|
203 |
|
---|
204 | // Loop until iteration limit reached or canceled.
|
---|
205 | for (ResultsIterations = 0; ResultsIterations < MaximumIterations; ResultsIterations++) {
|
---|
206 | double fitness = double.NaN;
|
---|
207 |
|
---|
208 | try {
|
---|
209 | fitness = iterate();
|
---|
210 | }
|
---|
211 | catch (OperationCanceledException) {
|
---|
212 | throw;
|
---|
213 | }
|
---|
214 | finally {
|
---|
215 | ResultsEvaluations = tracker.Evaluations;
|
---|
216 | ResultsBestSolution = new BinaryVector(tracker.BestSolution);
|
---|
217 | ResultsBestQuality = tracker.BestQuality;
|
---|
218 | ResultsBestFoundOnEvaluation = tracker.BestFoundOnEvaluation;
|
---|
219 | ResultsQualitiesBest.Values.Add(tracker.BestQuality);
|
---|
220 | ResultsQualitiesIteration.Values.Add(fitness);
|
---|
221 | }
|
---|
222 | }
|
---|
223 | }
|
---|
224 | }
|
---|
225 | }
|
---|