#region License Information
/* HeuristicLab
* Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.BinaryVectorEncoding;
using HeuristicLab.Optimization;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Random;
namespace HeuristicLab.Algorithms.ParameterlessPopulationPyramid {
[Item("Hill Climber", "Test algorithm.")]
[StorableClass]
[Creatable("Parameterless Population Pyramid")]
public class HillClimber : AlgorithmBase {
[Storable]
private IRandom random;
[StorableConstructor]
protected HillClimber(bool deserializing) : base(deserializing) { }
protected HillClimber(HillClimber original, Cloner cloner)
: base(original, cloner) {
}
public override IDeepCloneable Clone(Cloner cloner) {
return new HillClimber(this, cloner);
}
public HillClimber()
: base() {
random = new MersenneTwister();
}
protected override void Run() {
bool[] solution = new bool[Problem.Length];
for (int i = 0; i < solution.Length; i++) {
solution[i] = random.Next(2) == 1;
}
var fitness = Problem.Evaluate(solution);
fitness = ImproveToLocalOptimum(Problem, solution, fitness, random);
Results.Add(new Result("Best quality", new DoubleValue(fitness)));
Results.Add(new Result("Best solution", new BinaryVector(solution)));
}
public static double ImproveToLocalOptimum(BinaryVectorProblem problem, bool[] solution, double fitness, IRandom rand) {
var tried = new HashSet();
double newFitness=fitness;
do {
var options = Enumerable.Range(0, solution.Length).Shuffle(rand);
foreach (var option in options) {
solution[option] = !solution[option];
newFitness = problem.Evaluate(solution);
if ((problem.Maximization && fitness < newFitness) || (!problem.Maximization && fitness > newFitness)) {
fitness = newFitness;
tried.Clear();
} else {
solution[option] = !solution[option];
}
tried.Add(option);
}
} while (tried.Count != solution.Length);
return fitness;
}
}
}