#region License Information /* HeuristicLab * Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.BinaryVectorEncoding; using HeuristicLab.Encodings.PermutationEncoding; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Problems.Knapsack; using HeuristicLab.Problems.TravelingSalesman; namespace HeuristicLab.Networks.IntegratedOptimization.TravelingThief { [Item("Traveling Thief Problem (TTP)", "")] [Creatable(CreatableAttribute.Categories.Problems, Priority = 999)] [StorableClass] public sealed class TravelingThiefProblem : SingleObjectiveBasicProblem { private const string InstanceParameterName = "Instance"; [Storable] private Dictionary availability; [Storable] private double minSpeed, maxSpeed, rentingRatio; [Storable] private TravelingSalesmanProblem tsp; [Storable] private BinaryKnapsackProblem ksp; public override bool Maximization { get { return true; } } public IFixedValueParameter InstanceParameter { get { return (IFixedValueParameter)Parameters[InstanceParameterName]; } } [StorableConstructor] private TravelingThiefProblem(bool deserializing) : base(deserializing) { } private TravelingThiefProblem(TravelingThiefProblem original, Cloner cloner) : base(original, cloner) { if (original.availability != null) availability = original.availability.ToDictionary(k => k.Key, v => (int[])v.Value.Clone()); minSpeed = original.minSpeed; maxSpeed = original.maxSpeed; rentingRatio = original.rentingRatio; tsp = cloner.Clone(original.tsp); ksp = cloner.Clone(original.ksp); InstanceParameter.Value.ToStringChanged += InstanceParameter_Value_ToStringChanged; } public TravelingThiefProblem() { Parameters.Add(new FixedValueParameter(InstanceParameterName)); InstanceParameter.Value.ToStringChanged += InstanceParameter_Value_ToStringChanged; Encoding.Add(new BinaryVectorEncoding("loot")) .Add(new PermutationEncoding("tour")); } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { InstanceParameter.Value.ToStringChanged += InstanceParameter_Value_ToStringChanged; } private void InstanceParameter_Value_ToStringChanged(object sender, EventArgs e) { string filePath = InstanceParameter.Value.Value; TtpUtils.DistanceType distanceType; double[,] tspCoordinates; int kspCapacity; int[] kspItemValues, kspItemWeights; int[] ttpAvailability; TtpUtils.Import(filePath, out tspCoordinates, out distanceType, out kspCapacity, out kspItemValues, out kspItemWeights, out ttpAvailability, out minSpeed, out maxSpeed, out rentingRatio); this.availability = TtpUtils.GetAvailability(ttpAvailability); tsp = new TravelingSalesmanProblem(); tsp.Coordinates = new DoubleMatrix(tspCoordinates); tsp.DistanceMatrix = new DistanceMatrix(TtpUtils.GetDistances(tsp.Coordinates, distanceType)); ksp = new BinaryKnapsackProblem(); ksp.KnapsackCapacity.Value = kspCapacity; ksp.Encoding.Length = kspItemValues.Length; ksp.Values = new IntArray(kspItemValues); ksp.Weights = new IntArray(kspItemWeights); Encoding.Encodings.OfType().Single().Length = ksp.Encoding.Length; Encoding.Encodings.OfType().Single().Length = tsp.Coordinates.Rows; } public override IDeepCloneable Clone(Cloner cloner) { return new TravelingThiefProblem(this, cloner); } public override double Evaluate(Individual individual, IRandom random) { var binaryVector = individual.BinaryVector(); var permutation = individual.Permutation(); return TtpUtils.Evaluate(tsp, permutation.ToArray(), ksp, binaryVector.ToArray(), availability, rentingRatio, minSpeed, maxSpeed); } public override void Analyze(Individual[] individuals, double[] qualities, ResultCollection results, IRandom random) { base.Analyze(individuals, qualities, results, random); var orderedIndividuals = individuals.Zip(qualities, (i, q) => new { Individual = i, Quality = q }).OrderBy(z => z.Quality); var best = Maximization ? orderedIndividuals.Last() : orderedIndividuals.First(); var bestIndividual = best.Individual; var bestQuality = best.Quality; if (!results.ContainsKey("Best TTP Quality")) { results.Add(new Result("Best TTP Quality", typeof(DoubleValue))); results.Add(new Result("Best Tour", typeof(PathTSPTour))); results.Add(new Result("Best Loot", typeof(KnapsackSolution))); } results["Best TTP Quality"].Value = new DoubleValue(bestQuality); results["Best Tour"].Value = new PathTSPTour( (DoubleMatrix)tsp.Coordinates.Clone(), (Permutation)bestIndividual.Permutation().Clone(), new DoubleValue(double.NaN) ); results["Best Loot"].Value = new KnapsackSolution( (BinaryVector)bestIndividual.BinaryVector().Clone(), new DoubleValue(double.NaN), (IntValue)ksp.KnapsackCapacity.Clone(), (IntArray)ksp.Weights.Clone(), (IntArray)ksp.Values.Clone() ); } } }