#region License Information /* HeuristicLab * Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Threading; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.BinaryVectorEncoding; using HeuristicLab.Optimization; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Networks.IntegratedOptimization.MachineLearning { [StorableClass] [Creatable("Optimization Networks")] public sealed class OrchestratedBinaryProblem : SingleObjectiveBasicProblem { [Storable] private readonly bool maximization; public override bool Maximization { get { return maximization; } } [Storable] public FeatureSelectionOrchestrator Orchestrator { get; private set; } [StorableConstructor] private OrchestratedBinaryProblem(bool deserializing) : base(deserializing) { } private OrchestratedBinaryProblem(OrchestratedBinaryProblem original, Cloner cloner) : base(original, cloner) { this.maximization = original.maximization; this.Orchestrator = cloner.Clone(original.Orchestrator); } public override IDeepCloneable Clone(Cloner cloner) { return new OrchestratedBinaryProblem(this, cloner); } public OrchestratedBinaryProblem(FeatureSelectionOrchestrator orchestator, int binaryVectorLength, bool maximization) : base() { Orchestrator = orchestator; Encoding.Length = binaryVectorLength; this.maximization = maximization; } public override double Evaluate(Individual individual, IRandom random) { var msg = Orchestrator.FeatureSelectionEvaluationPort.PrepareMessage(); msg["BinaryVector"] = individual.BinaryVector(); Orchestrator.FeatureSelectionEvaluationPort.ReceiveMessage(msg, new CancellationToken()); var quality = (DoubleValue)msg["Quality"]; return quality.Value; } } }