#region License Information
/* HeuristicLab
* Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Threading;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.BinaryVectorEncoding;
using HeuristicLab.Optimization;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Networks.IntegratedOptimization.MachineLearning {
[StorableClass]
[Creatable("Optimization Networks")]
public sealed class OrchestratedBinaryProblem : SingleObjectiveBasicProblem {
[Storable]
private readonly bool maximization;
public override bool Maximization { get { return maximization; } }
[Storable]
public FeatureSelectionOrchestrator Orchestrator { get; private set; }
[StorableConstructor]
private OrchestratedBinaryProblem(bool deserializing) : base(deserializing) { }
private OrchestratedBinaryProblem(OrchestratedBinaryProblem original, Cloner cloner)
: base(original, cloner) {
this.maximization = original.maximization;
this.Orchestrator = cloner.Clone(original.Orchestrator);
}
public override IDeepCloneable Clone(Cloner cloner) {
return new OrchestratedBinaryProblem(this, cloner);
}
public OrchestratedBinaryProblem(FeatureSelectionOrchestrator orchestator, int binaryVectorLength, bool maximization)
: base() {
Orchestrator = orchestator;
Encoding.Length = binaryVectorLength;
this.maximization = maximization;
}
public override double Evaluate(Individual individual, IRandom random) {
var msg = Orchestrator.FeatureSelectionEvaluationPort.PrepareMessage();
msg["BinaryVector"] = individual.BinaryVector();
Orchestrator.FeatureSelectionEvaluationPort.ReceiveMessage(msg, new CancellationToken());
var quality = (DoubleValue)msg["Quality"];
return quality.Value;
}
}
}