#region License Information /* HeuristicLab * Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Linq; using HeuristicLab.Algorithms.CMAEvolutionStrategy; using HeuristicLab.Algorithms.GeneticAlgorithm; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Encodings.RealVectorEncoding; using HeuristicLab.Optimization; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Problems.FacilityLocation; using HeuristicLab.Problems.FacilityLocation.CplexSolver; using HeuristicLab.Problems.VehicleRouting; using HeuristicLab.Problems.VehicleRouting.Encodings.General; using HeuristicLab.Selection; namespace HeuristicLab.Networks.IntegratedOptimization.LocationRouting { [Item("LrpNetwork1", "Version 1 of a TTP optimization network.")] [Creatable("Optimization Networks")] [StorableClass] public sealed class LrpNetwork1 : LrpNetwork, IOptimizer { [StorableConstructor] private LrpNetwork1(bool deserializing) : base(deserializing) { } private LrpNetwork1(LrpNetwork1 original, Cloner cloner) : base(original, cloner) { } public LrpNetwork1() : this("LrpNetwork1") { } public LrpNetwork1(string name) : base(name) { Orchestrator = new LrpOrchestratorNode1(OrchestratorNodeName); MetaSolver = new OrchestratedAlgorithmNode(MetaSolverNodeName); FlpSolver = new OrchestratedAlgorithmNode(FlpSolverNodeName); VrpSolver = new OrchestratedAlgorithmNode(VrpSolverNodeName); var cmaes = new CMAEvolutionStrategy(); var vp = new MinimizationVariegationProblem(); cmaes.Problem = vp; var cmaAnalyzer = cmaes.Analyzer.Operators.OfType().Single(); cmaes.Analyzer.Operators.SetItemCheckedState(cmaAnalyzer, true); cmaes.MaximumGenerations = 80; MetaSolver.Algorithm = cmaes; Orchestrator.MetaSolverOrchestrationPort.ConnectedPort = MetaSolver.OrchestrationPort; var cplexSolver = new FLPCplexSolver(); cplexSolver.Problem = new FacilityLocationProblem(); cplexSolver.MaximumRuntimeParameter.Value.Value = TimeSpan.FromSeconds(3.0); FlpSolver.Algorithm = cplexSolver; Orchestrator.FlpSolverOrchestrationPort.ConnectedPort = FlpSolver.OrchestrationPort; var ga = new GeneticAlgorithm(); ga.Problem = new VehicleRoutingProblem(); ga.PopulationSize.Value = 100; var crossover = ga.CrossoverParameter.ValidValues.OfType().Single(x => x.Name == "MultiVRPSolutionCrossover"); ga.CrossoverParameter.Value = crossover; ga.MaximumGenerations.Value = 100; var mutator = ga.MutatorParameter.ValidValues.OfType().Single(x => x.Name == "MultiVRPSolutionManipulator"); ga.MutatorParameter.Value = mutator; var selector = ga.SelectorParameter.ValidValues.OfType().Single(); ga.SelectorParameter.Value = selector; VrpSolver.Algorithm = ga; Orchestrator.VrpSolverOrchestrationPort.ConnectedPort = VrpSolver.OrchestrationPort; } public override IDeepCloneable Clone(Cloner cloner) { return new LrpNetwork1(this, cloner); } } }