#region License Information /* HeuristicLab * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Text; using System.Xml; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.DataAnalysis; using HeuristicLab.GP.StructureIdentification; namespace HeuristicLab.GP.StructureIdentification.Classification { public class MulticlassOneVsOneAnalyzer : OperatorBase { private const string DATASET = "Dataset"; private const string TARGETVARIABLE = "TargetVariable"; private const string TARGETCLASSVALUES = "TargetClassValues"; private const string TRAININGSAMPLESSTART = "TrainingSamplesStart"; private const string TRAININGSAMPLESEND = "TrainingSamplesEnd"; private const string SAMPLESSTART = "SamplesStart"; private const string SAMPLESEND = "SamplesEnd"; private const string CLASSAVALUE = "ClassAValue"; private const string CLASSBVALUE = "ClassBValue"; private const string BESTMODELLSCOPE = "BestValidationSolution"; private const string BESTMODELL = "FunctionTree"; private const string VOTES = "Votes"; private const string ACCURACY = "Accuracy"; private const double EPSILON = 1E-6; public override string Description { get { return @"TASK"; } } public MulticlassOneVsOneAnalyzer() : base() { AddVariableInfo(new VariableInfo(DATASET, "The dataset to use", typeof(Dataset), VariableKind.In)); AddVariableInfo(new VariableInfo(TARGETVARIABLE, "Target variable", typeof(IntData), VariableKind.In)); AddVariableInfo(new VariableInfo(TARGETCLASSVALUES, "Class values of the target variable in the original dataset", typeof(ItemList), VariableKind.In)); AddVariableInfo(new VariableInfo(CLASSAVALUE, "The original class value of the class A in the subscope", typeof(DoubleData), VariableKind.In)); AddVariableInfo(new VariableInfo(CLASSBVALUE, "The original class value of the class B in the subscope", typeof(DoubleData), VariableKind.In)); AddVariableInfo(new VariableInfo(TRAININGSAMPLESSTART, "The start of training samples in the original dataset", typeof(IntData), VariableKind.In)); AddVariableInfo(new VariableInfo(TRAININGSAMPLESEND, "The end of training samples in the original dataset", typeof(IntData), VariableKind.In)); AddVariableInfo(new VariableInfo(SAMPLESSTART, "The start of samples in the original dataset", typeof(IntData), VariableKind.In)); AddVariableInfo(new VariableInfo(SAMPLESEND, "The end of samples in the original dataset", typeof(IntData), VariableKind.In)); AddVariableInfo(new VariableInfo(BESTMODELLSCOPE, "The variable containing the scope of the model (incl. meta data)", typeof(IScope), VariableKind.In)); AddVariableInfo(new VariableInfo(BESTMODELL, "The variable in the scope of the model that contains the actual model", typeof(BakedFunctionTree), VariableKind.In)); AddVariableInfo(new VariableInfo(VOTES, "Array with the votes for each instance", typeof(IntMatrixData), VariableKind.New)); AddVariableInfo(new VariableInfo(ACCURACY, "Accuracy of the one-vs-one multi-cass classifier", typeof(DoubleData), VariableKind.New)); } public override IOperation Apply(IScope scope) { Dataset dataset = GetVariableValue(DATASET, scope, true); int targetVariable = GetVariableValue(TARGETVARIABLE, scope, true).Data; int trainingSamplesStart = GetVariableValue(TRAININGSAMPLESSTART, scope, true).Data; int trainingSamplesEnd = GetVariableValue(TRAININGSAMPLESEND, scope, true).Data; int samplesStart = GetVariableValue(SAMPLESSTART, scope, true).Data; int samplesEnd = GetVariableValue(SAMPLESEND, scope, true).Data; ItemList classValues = GetVariableValue>(TARGETCLASSVALUES, scope, true); int[,] votes = new int[samplesEnd - samplesStart, classValues.Count]; foreach(IScope childScope in scope.SubScopes) { double classAValue = GetVariableValue(CLASSAVALUE, childScope, true).Data; double classBValue = GetVariableValue(CLASSBVALUE, childScope, true).Data; IScope bestScope = GetVariableValue(BESTMODELLSCOPE, childScope, true); BakedFunctionTree functionTree = GetVariableValue(BESTMODELL, bestScope, true); BakedTreeEvaluator evaluator = new BakedTreeEvaluator(); evaluator.ResetEvaluator(dataset, targetVariable, trainingSamplesStart, trainingSamplesEnd, 1.0); evaluator.PrepareForEvaluation(functionTree); for(int i = 0; i < (samplesEnd - samplesStart); i++) { double est = evaluator.Evaluate(i + samplesStart); if(est < 0.5) { CastVote(votes, i, classAValue, classValues); } else { CastVote(votes, i, classBValue, classValues); } } } int correctlyClassified = 0; for(int i = 0; i < (samplesEnd - samplesStart); i++) { double originalClassValue = dataset.GetValue(i + samplesStart, targetVariable); double estimatedClassValue = classValues[0].Data; int maxVotes = votes[i, 0]; int sameVotes = 0; for(int j = 1; j < classValues[j].Data; j++) { if(votes[i, j] > maxVotes) { maxVotes = votes[i, j]; estimatedClassValue = classValues[j].Data; sameVotes = 0; } else if(votes[i, j] == maxVotes) { sameVotes++; } } if(IsEqual(originalClassValue, estimatedClassValue) && sameVotes == 0) correctlyClassified++; } double accuracy = correctlyClassified / (double)(samplesEnd - samplesStart); scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName(VOTES), new IntMatrixData(votes))); scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName(ACCURACY), new DoubleData(accuracy))); return null; } private void CastVote(int[,] votes, int sample, double votedClass, ItemList classValues) { for(int i = 0; i < classValues.Count; i++) { if(IsEqual(classValues[i].Data, votedClass)) votes[sample, i]++; } } private bool IsEqual(double x, double y) { return Math.Abs(x - y) < EPSILON; } } }