#region License Information
/* HeuristicLab
* Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using HeuristicLab.Problems.DataAnalysis;
using HeuristicLab.Random;
using Microsoft.VisualStudio.TestTools.UnitTesting;
namespace HeuristicLab.Problems.DataAnalysis_34.Tests {
[TestClass]
public class OnlineCalculatorPerformanceTest {
private const int Rows = 5000;
private const int Columns = 2;
private const int Repetitions = 10000;
private TestContext testContextInstance;
///
///Gets or sets the test context which provides
///information about and functionality for the current test run.
///
public TestContext TestContext {
get { return testContextInstance; }
set { testContextInstance = value; }
}
[TestMethod]
public void OnlineAccuracyCalculatorPerformanceTest() {
TestCalculatorPerfomance(OnlineAccuracyCalculator.Calculate);
}
[TestMethod]
public void OnlineCovarianceCalculatorPerformanceTest() {
TestCalculatorPerfomance(OnlineCovarianceCalculator.Calculate);
}
[TestMethod]
public void OnlineMeanAbsolutePercentageErrorCalculatorPerformanceTest() {
TestCalculatorPerfomance(OnlineMeanAbsolutePercentageErrorCalculator.Calculate);
}
[TestMethod]
public void OnlineMeanSquaredErrorCalculatorPerformanceTest() {
TestCalculatorPerfomance(OnlineMeanSquaredErrorCalculator.Calculate);
}
[TestMethod]
public void OnlineNormalizedMeanSquaredErrorCalculatorPerformanceTest() {
TestCalculatorPerfomance(OnlineNormalizedMeanSquaredErrorCalculator.Calculate);
}
[TestMethod]
public void OnlinePearsonsRSquaredCalculatorPerformanceTest() {
TestCalculatorPerfomance(OnlinePearsonsRSquaredCalculator.Calculate);
}
private delegate double CalcateFunc(IEnumerable estimated, IEnumerable original, out OnlineCalculatorError errorState);
private void TestCalculatorPerfomance(CalcateFunc calculateFunc) {
var twister = new MersenneTwister(31415);
var dataset = CreateRandomDataset(twister, Rows, Columns);
OnlineCalculatorError errorState = OnlineCalculatorError.None; ;
Stopwatch watch = new Stopwatch();
watch.Start();
for (int i = 0; i < Repetitions; i++) {
double value = calculateFunc(dataset.GetDoubleValues("y"), dataset.GetDoubleValues("x0"), out errorState);
}
Assert.AreEqual(errorState, OnlineCalculatorError.None);
watch.Stop();
TestContext.WriteLine("");
TestContext.WriteLine("Calculated Rows per milisecond: {0}.", Rows * Repetitions * 1.0 / watch.ElapsedMilliseconds);
}
public static Dataset CreateRandomDataset(MersenneTwister twister, int rows, int columns) {
double[,] data = new double[rows, columns];
for (int i = 0; i < rows; i++) {
for (int j = 0; j < columns; j++) {
data[i, j] = twister.NextDouble() * 2.0 - 1.0;
}
}
IEnumerable variableNames = new string[] { "y" }.Concat(Enumerable.Range(0, columns - 1).Select(x => "x" + x.ToString()));
Dataset ds = new Dataset(variableNames, data);
return ds;
}
}
}