#region License Information /* HeuristicLab * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; namespace HeuristicLab.Problems.Instances.DataAnalysis { public class RippleFunction : ArtificialRegressionDataDescriptor { public override string Name { get { return "Vladislavleva-7 F7(X1, X2) = (X1 - 3)(X2 - 3) + 2 * sin((X1 - 4)(X2 - 4))"; } } public override string Description { get { return "Paper: Order of Nonlinearity as a Complexity Measure for Models Generated by Symbolic Regression via Pareto Genetic Programming " + Environment.NewLine + "Authors: Ekaterina J. Vladislavleva, Member, IEEE, Guido F. Smits, Member, IEEE, and Dick den Hertog" + Environment.NewLine + "Function: F7(X1, X2) = (X1 - 3)(X2 - 3) + 2 * sin((X1 - 4)(X2 - 4))" + Environment.NewLine + "Training Data: 300 points X1, X2 = Rand(0.05, 6.05)" + Environment.NewLine + "Test Data: 1000 points X1, X2 = Rand(-0.25, 6.35)" + Environment.NewLine + "Function Set: +, -, *, /, square, e^x, e^-x, sin(x), cos(x), x^eps, x + eps, x + eps"; } } protected override string TargetVariable { get { return "Y"; } } protected override string[] VariableNames { get { return new string[] { "X1", "X2", "Y" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 300; } } protected override int TestPartitionStart { get { return 300; } } protected override int TestPartitionEnd { get { return 300 + 1000; } } protected override List> GenerateValues() { List> data = new List>(); for (int i = 0; i < AllowedInputVariables.Count(); i++) { data.Add(ValueGenerator.GenerateUniformDistributedValues(300, 0.05, 6.05).ToList()); } for (int i = 0; i < AllowedInputVariables.Count(); i++) { data[i].AddRange(ValueGenerator.GenerateUniformDistributedValues(1000, -0.25, 6.35)); } double x1, x2; List results = new List(); for (int i = 0; i < data[0].Count; i++) { x1 = data[0][i]; x2 = data[1][i]; results.Add((x1 - 3) * (x2 - 3) + 2 * Math.Sin((x1 - 4) * (x2 - 4))); } data.Add(results); return data; } } }