#region License Information /* HeuristicLab * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Random; namespace HeuristicLab.Problems.Instances.DataAnalysis { public static class ValueGenerator { private static FastRandom rand = new FastRandom(); /// /// Generates a sequence of evenly spaced points between start and end (inclusive!). /// /// The smallest and first value of the sequence. /// The largest and last value of the sequence. /// The step size between subsequent values. /// An sequence of values from start to end (inclusive) public static IEnumerable GenerateSteps(double start, double end, double stepWidth) { if (start > end) throw new ArgumentException("start must be less than or equal end."); if (stepWidth <= 0) throw new ArgumentException("stepwith must be larger than zero.", "stepWidth"); double x = start; // x<=end could skip the last value because of numerical problems while (x < end || x.IsAlmost(end)) { yield return x; x += stepWidth; } } /// /// Generates uniformly distributed values between start and end (inclusive!) /// /// Number of values to generate. /// The lower value (inclusive) /// The upper value (inclusive) /// An enumerable including n values in [start, end] public static IEnumerable GenerateUniformDistributedValues(int n, double start, double end) { for (int i = 0; i < n; i++) { // we need to return a random value including end. // so we cannot use rand.NextDouble() as it returns a value strictly smaller than 1. double r = rand.NextUInt() / (double)uint.MaxValue; // r \in [0,1] yield return r * (end - start) + start; } } /// /// Generates normally distributed values sampling from N(mu, sigma) /// /// Number of values to generate. /// The mu parameter of the normal distribution /// The sigma parameter of the normal distribution /// An enumerable including n values ~ N(mu, sigma) public static IEnumerable GenerateNormalDistributedValues(int n, double mu, double sigma) { for (int i = 0; i < n; i++) yield return NormalDistributedRandom.NextDouble(rand, mu, sigma); } // iterative approach public static IEnumerable> GenerateAllCombinationsOfValuesInLists(List> lists) { List> allCombinations = new List>(); if (lists.Count < 1) { return allCombinations; } List> enumerators = new List>(); foreach (var list in lists) { allCombinations.Add(new List()); enumerators.Add(list.GetEnumerator()); } bool finished = !enumerators.All(x => x.MoveNext()); while (!finished) { GetCurrentCombination(enumerators, allCombinations); finished = MoveNext(enumerators, lists); } return allCombinations; } private static bool MoveNext(List> enumerators, List> lists) { int cur = enumerators.Count - 1; while (cur >= 0 && !enumerators[cur].MoveNext()) { enumerators[cur] = lists[cur].GetEnumerator(); enumerators[cur].MoveNext(); cur--; } return cur < 0; } private static void GetCurrentCombination(List> enumerators, List> allCombinations) { for (int i = 0; i < enumerators.Count(); i++) { allCombinations[i].Add(enumerators[i].Current); } } } }