#region License Information
/* HeuristicLab
* Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using HeuristicLab.Common;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
public abstract class SymbolicDataAnalysisSolutionImpactValuesCalculator : ISymbolicDataAnalysisSolutionImpactValuesCalculator {
public abstract double CalculateReplacementValue(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node, IDataAnalysisProblemData problemData, IEnumerable rows);
public abstract double CalculateImpactValue(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node, IDataAnalysisProblemData problemData, IEnumerable rows, double originalQuality = double.NaN);
protected static double CalculateReplacementValue(ISymbolicExpressionTreeNode node, ISymbolicExpressionTree sourceTree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter,
Dataset dataset, IEnumerable rows) {
//optimization: constant nodes return always the same value
ConstantTreeNode constantNode = node as ConstantTreeNode;
if (constantNode != null) return constantNode.Value;
var rootSymbol = new ProgramRootSymbol().CreateTreeNode();
var startSymbol = new StartSymbol().CreateTreeNode();
rootSymbol.AddSubtree(startSymbol);
startSymbol.AddSubtree((ISymbolicExpressionTreeNode)node.Clone());
var tempTree = new SymbolicExpressionTree(rootSymbol);
// clone ADFs of source tree
for (int i = 1; i < sourceTree.Root.SubtreeCount; i++) {
tempTree.Root.AddSubtree((ISymbolicExpressionTreeNode)sourceTree.Root.GetSubtree(i).Clone());
}
return interpreter.GetSymbolicExpressionTreeValues(tempTree, dataset, rows).Median();
}
}
}