#region License Information /* HeuristicLab * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.DataAnalysis.Symbolic { /// /// An operator that analyzes the training best symbolic data analysis solution for single objective symbolic data analysis problems. /// [Item("SymbolicDataAnalysisSingleObjectiveTrainingBestSolutionAnalyzer", "An operator that analyzes the training best symbolic data analysis solution for single objective symbolic data analysis problems.")] [StorableClass] public abstract class SymbolicDataAnalysisSingleObjectiveTrainingBestSolutionAnalyzer : SymbolicDataAnalysisSingleObjectiveAnalyzer where T : class, ISymbolicDataAnalysisSolution { private const string TrainingBestSolutionParameterName = "Best training solution"; private const string TrainingBestSolutionQualityParameterName = "Best training solution quality"; private const string UpdateAlwaysParameterName = "Always update best solution"; #region parameter properties public ILookupParameter TrainingBestSolutionParameter { get { return (ILookupParameter)Parameters[TrainingBestSolutionParameterName]; } } public ILookupParameter TrainingBestSolutionQualityParameter { get { return (ILookupParameter)Parameters[TrainingBestSolutionQualityParameterName]; } } public IFixedValueParameter UpdateAlwaysParameter { get { return (IFixedValueParameter)Parameters[UpdateAlwaysParameterName]; } } #endregion #region properties public T TrainingBestSolution { get { return TrainingBestSolutionParameter.ActualValue; } set { TrainingBestSolutionParameter.ActualValue = value; } } public DoubleValue TrainingBestSolutionQuality { get { return TrainingBestSolutionQualityParameter.ActualValue; } set { TrainingBestSolutionQualityParameter.ActualValue = value; } } public BoolValue UpdateAlways { get { return UpdateAlwaysParameter.Value; } } #endregion [StorableConstructor] protected SymbolicDataAnalysisSingleObjectiveTrainingBestSolutionAnalyzer(bool deserializing) : base(deserializing) { } protected SymbolicDataAnalysisSingleObjectiveTrainingBestSolutionAnalyzer(SymbolicDataAnalysisSingleObjectiveTrainingBestSolutionAnalyzer original, Cloner cloner) : base(original, cloner) { } public SymbolicDataAnalysisSingleObjectiveTrainingBestSolutionAnalyzer() : base() { Parameters.Add(new LookupParameter(TrainingBestSolutionParameterName, "The training best symbolic data analyis solution.")); Parameters.Add(new LookupParameter(TrainingBestSolutionQualityParameterName, "The quality of the training best symbolic data analysis solution.")); Parameters.Add(new FixedValueParameter(UpdateAlwaysParameterName, "Determines if the best training solution should always be updated regardless of its quality.", new BoolValue(false))); UpdateAlwaysParameter.Hidden = true; } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { if (!Parameters.ContainsKey(UpdateAlwaysParameterName)) { Parameters.Add(new FixedValueParameter(UpdateAlwaysParameterName, "Determines if the best training solution should always be updated regardless of its quality.", new BoolValue(false))); UpdateAlwaysParameter.Hidden = true; } } public override IOperation Apply() { #region find best tree double bestQuality = Maximization.Value ? double.NegativeInfinity : double.PositiveInfinity; ISymbolicExpressionTree bestTree = null; ISymbolicExpressionTree[] tree = SymbolicExpressionTree.ToArray(); double[] quality = Quality.Select(x => x.Value).ToArray(); for (int i = 0; i < tree.Length; i++) { if (IsBetter(quality[i], bestQuality, Maximization.Value)) { bestQuality = quality[i]; bestTree = tree[i]; } } #endregion var results = ResultCollection; if (bestTree != null && (UpdateAlways.Value || TrainingBestSolutionQuality == null || IsBetter(bestQuality, TrainingBestSolutionQuality.Value, Maximization.Value))) { TrainingBestSolution = CreateSolution(bestTree, bestQuality); TrainingBestSolutionQuality = new DoubleValue(bestQuality); if (!results.ContainsKey(TrainingBestSolutionParameter.Name)) { results.Add(new Result(TrainingBestSolutionParameter.Name, TrainingBestSolutionParameter.Description, TrainingBestSolution)); results.Add(new Result(TrainingBestSolutionQualityParameter.Name, TrainingBestSolutionQualityParameter.Description, TrainingBestSolutionQuality)); } else { results[TrainingBestSolutionParameter.Name].Value = TrainingBestSolution; results[TrainingBestSolutionQualityParameter.Name].Value = TrainingBestSolutionQuality; } } return base.Apply(); } protected abstract T CreateSolution(ISymbolicExpressionTree bestTree, double bestQuality); private bool IsBetter(double lhs, double rhs, bool maximization) { if (maximization) return lhs > rhs; else return lhs < rhs; } } }