#region License Information /* HeuristicLab * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Operators; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Analysis { /// /// An operator for analyzing the solution diversity in a population. /// [Item("SingleObjectivePopulationDiversityAnalyzer", "An operator for analyzing the solution diversity in a population.")] [StorableClass] public class SingleObjectivePopulationDiversityAnalyzer : SingleSuccessorOperator, IAnalyzer, ISimilarityBasedOperator { #region ISimilarityBasedOperator Members [Storable] public ISolutionSimilarityCalculator SimilarityCalculator { get; set; } #endregion public virtual bool EnabledByDefault { get { return false; } } public ScopeParameter CurrentScopeParameter { get { return (ScopeParameter)Parameters["CurrentScope"]; } } public LookupParameter MaximizationParameter { get { return (LookupParameter)Parameters["Maximization"]; } } public ScopeTreeLookupParameter QualityParameter { get { return (ScopeTreeLookupParameter)Parameters["Quality"]; } } public ValueLookupParameter ResultsParameter { get { return (ValueLookupParameter)Parameters["Results"]; } } public ValueParameter StoreHistoryParameter { get { return (ValueParameter)Parameters["StoreHistory"]; } } public ValueParameter UpdateIntervalParameter { get { return (ValueParameter)Parameters["UpdateInterval"]; } } public LookupParameter UpdateCounterParameter { get { return (LookupParameter)Parameters["UpdateCounter"]; } } [StorableConstructor] protected SingleObjectivePopulationDiversityAnalyzer(bool deserializing) : base(deserializing) { } protected SingleObjectivePopulationDiversityAnalyzer(SingleObjectivePopulationDiversityAnalyzer original, Cloner cloner) : base(original, cloner) { SimilarityCalculator = cloner.Clone(original.SimilarityCalculator); } public SingleObjectivePopulationDiversityAnalyzer() : base() { Parameters.Add(new ScopeParameter("CurrentScope", "The current scope that contains the solutions which should be analyzed.")); Parameters.Add(new LookupParameter("Maximization", "True if the problem is a maximization problem.")); Parameters.Add(new ScopeTreeLookupParameter("Quality", "The qualities of the solutions which should be analyzed.")); Parameters.Add(new ValueLookupParameter("Results", "The result collection where the population diversity analysis results should be stored.")); Parameters.Add(new ValueParameter("StoreHistory", "True if the history of the population diversity analysis should be stored.", new BoolValue(false))); Parameters.Add(new ValueParameter("UpdateInterval", "The interval in which the population diversity analysis should be applied.", new IntValue(1))); Parameters.Add(new LookupParameter("UpdateCounter", "The value which counts how many times the operator was called since the last update.", "PopulationDiversityAnalyzerUpdateCounter")); MaximizationParameter.Hidden = true; QualityParameter.Hidden = true; ResultsParameter.Hidden = true; UpdateCounterParameter.Hidden = true; } public override IDeepCloneable Clone(Cloner cloner) { return new SingleObjectivePopulationDiversityAnalyzer(this, cloner); } public override IOperation Apply() { int updateInterval = UpdateIntervalParameter.Value.Value; IntValue updateCounter = UpdateCounterParameter.ActualValue; // if counter does not yet exist then initialize it with update interval // to make sure the solutions are analyzed on the first application of this operator if (updateCounter == null) { updateCounter = new IntValue(updateInterval); UpdateCounterParameter.ActualValue = updateCounter; } else updateCounter.Value++; //analyze solutions only every 'updateInterval' times if (updateCounter.Value == updateInterval) { updateCounter.Value = 0; bool max = MaximizationParameter.ActualValue.Value; ItemArray qualities = QualityParameter.ActualValue; bool storeHistory = StoreHistoryParameter.Value.Value; int count = CurrentScopeParameter.ActualValue.SubScopes.Count; if (count > 1) { // calculate solution similarities var similarityMatrix = SimilarityCalculator.CalculateSolutionCrowdSimilarity(CurrentScopeParameter.ActualValue); // sort similarities by quality double[][] sortedSimilarityMatrix = null; if (max) sortedSimilarityMatrix = similarityMatrix .Select((x, index) => new { Solutions = x, Quality = qualities[index] }) .OrderByDescending(x => x.Quality) .Select(x => x.Solutions) .ToArray(); else sortedSimilarityMatrix = similarityMatrix .Select((x, index) => new { Solutions = x, Quality = qualities[index] }) .OrderBy(x => x.Quality) .Select(x => x.Solutions) .ToArray(); double[,] similarities = new double[similarityMatrix.Length, similarityMatrix[0].Length]; for (int i = 0; i < similarityMatrix.Length; i++) for (int j = 0; j < similarityMatrix[0].Length; j++) similarities[i, j] = similarityMatrix[i][j]; // calculate minimum, average and maximum similarities double similarity; double[] minSimilarities = new double[count]; double[] avgSimilarities = new double[count]; double[] maxSimilarities = new double[count]; for (int i = 0; i < count; i++) { minSimilarities[i] = 1; avgSimilarities[i] = 0; maxSimilarities[i] = 0; for (int j = 0; j < count; j++) { if (i != j) { similarity = similarities[i, j]; if ((similarity < 0) || (similarity > 1)) throw new InvalidOperationException("Solution similarities have to be in the interval [0;1]."); if (minSimilarities[i] > similarity) minSimilarities[i] = similarity; avgSimilarities[i] += similarity; if (maxSimilarities[i] < similarity) maxSimilarities[i] = similarity; } } avgSimilarities[i] = avgSimilarities[i] / (count - 1); } double avgMinSimilarity = minSimilarities.Average(); double avgAvgSimilarity = avgSimilarities.Average(); double avgMaxSimilarity = maxSimilarities.Average(); // fetch results collection ResultCollection results; if (!ResultsParameter.ActualValue.ContainsKey(Name + " Results")) { results = new ResultCollection(); ResultsParameter.ActualValue.Add(new Result(Name + " Results", results)); } else { results = (ResultCollection)ResultsParameter.ActualValue[Name + " Results"].Value; } // store similarities HeatMap similaritiesHeatMap = new HeatMap(similarities, "Solution Similarities", 0.0, 1.0); if (!results.ContainsKey("Solution Similarities")) results.Add(new Result("Solution Similarities", similaritiesHeatMap)); else results["Solution Similarities"].Value = similaritiesHeatMap; // store similarities history if (storeHistory) { if (!results.ContainsKey("Solution Similarities History")) { HeatMapHistory history = new HeatMapHistory(); history.Add(similaritiesHeatMap); results.Add(new Result("Solution Similarities History", history)); } else { ((HeatMapHistory)results["Solution Similarities History"].Value).Add(similaritiesHeatMap); } } // store average minimum, average and maximum similarity if (!results.ContainsKey("Average Minimum Solution Similarity")) results.Add(new Result("Average Minimum Solution Similarity", new DoubleValue(avgMinSimilarity))); else ((DoubleValue)results["Average Minimum Solution Similarity"].Value).Value = avgMinSimilarity; if (!results.ContainsKey("Average Average Solution Similarity")) results.Add(new Result("Average Average Solution Similarity", new DoubleValue(avgAvgSimilarity))); else ((DoubleValue)results["Average Average Solution Similarity"].Value).Value = avgAvgSimilarity; if (!results.ContainsKey("Average Maximum Solution Similarity")) results.Add(new Result("Average Maximum Solution Similarity", new DoubleValue(avgMaxSimilarity))); else ((DoubleValue)results["Average Maximum Solution Similarity"].Value).Value = avgMaxSimilarity; // store average minimum, average and maximum solution similarity data table DataTable minAvgMaxSimilarityDataTable; if (!results.ContainsKey("Average Minimum/Average/Maximum Solution Similarity")) { minAvgMaxSimilarityDataTable = new DataTable("Average Minimum/Average/Maximum Solution Similarity"); minAvgMaxSimilarityDataTable.VisualProperties.XAxisTitle = "Iteration"; minAvgMaxSimilarityDataTable.VisualProperties.YAxisTitle = "Solution Similarity"; minAvgMaxSimilarityDataTable.Rows.Add(new DataRow("Average Minimum Solution Similarity", null)); minAvgMaxSimilarityDataTable.Rows["Average Minimum Solution Similarity"].VisualProperties.StartIndexZero = true; minAvgMaxSimilarityDataTable.Rows.Add(new DataRow("Average Average Solution Similarity", null)); minAvgMaxSimilarityDataTable.Rows["Average Average Solution Similarity"].VisualProperties.StartIndexZero = true; minAvgMaxSimilarityDataTable.Rows.Add(new DataRow("Average Maximum Solution Similarity", null)); minAvgMaxSimilarityDataTable.Rows["Average Maximum Solution Similarity"].VisualProperties.StartIndexZero = true; results.Add(new Result("Average Minimum/Average/Maximum Solution Similarity", minAvgMaxSimilarityDataTable)); } else { minAvgMaxSimilarityDataTable = (DataTable)results["Average Minimum/Average/Maximum Solution Similarity"].Value; } minAvgMaxSimilarityDataTable.Rows["Average Minimum Solution Similarity"].Values.Add(avgMinSimilarity); minAvgMaxSimilarityDataTable.Rows["Average Average Solution Similarity"].Values.Add(avgAvgSimilarity); minAvgMaxSimilarityDataTable.Rows["Average Maximum Solution Similarity"].Values.Add(avgMaxSimilarity); // store minimum, average, maximum similarities data table DataTable minAvgMaxSimilaritiesDataTable = new DataTable("Minimum/Average/Maximum Solution Similarities"); minAvgMaxSimilaritiesDataTable.VisualProperties.XAxisTitle = "Solution Index"; minAvgMaxSimilaritiesDataTable.VisualProperties.YAxisTitle = "Solution Similarity"; minAvgMaxSimilaritiesDataTable.Rows.Add(new DataRow("Minimum Solution Similarity", null, minSimilarities)); minAvgMaxSimilaritiesDataTable.Rows["Minimum Solution Similarity"].VisualProperties.ChartType = DataRowVisualProperties.DataRowChartType.Points; minAvgMaxSimilaritiesDataTable.Rows.Add(new DataRow("Average Solution Similarity", null, avgSimilarities)); minAvgMaxSimilaritiesDataTable.Rows["Average Solution Similarity"].VisualProperties.ChartType = DataRowVisualProperties.DataRowChartType.Points; minAvgMaxSimilaritiesDataTable.Rows.Add(new DataRow("Maximum Solution Similarity", null, maxSimilarities)); minAvgMaxSimilaritiesDataTable.Rows["Maximum Solution Similarity"].VisualProperties.ChartType = DataRowVisualProperties.DataRowChartType.Points; if (!results.ContainsKey("Minimum/Average/Maximum Solution Similarities")) { results.Add(new Result("Minimum/Average/Maximum Solution Similarities", minAvgMaxSimilaritiesDataTable)); } else { results["Minimum/Average/Maximum Solution Similarities"].Value = minAvgMaxSimilaritiesDataTable; } // store minimum, average, maximum similarities history if (storeHistory) { if (!results.ContainsKey("Minimum/Average/Maximum Solution Similarities History")) { DataTableHistory history = new DataTableHistory(); history.Add(minAvgMaxSimilaritiesDataTable); results.Add(new Result("Minimum/Average/Maximum Solution Similarities History", history)); } else { ((DataTableHistory)results["Minimum/Average/Maximum Solution Similarities History"].Value).Add(minAvgMaxSimilaritiesDataTable); } } } } return base.Apply(); } } }