#region License Information /* HeuristicLab * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Optimization; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Problems.DataAnalysis; using HeuristicLab.Problems.DataAnalysis.Symbolic; using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression; using HeuristicLab.Parameters; namespace HeuristicLab.Algorithms.DataAnalysis { /// /// Nearest neighbour classification data analysis algorithm. /// [Item("Nearest Neighbour Classification", "Nearest neighbour classification data analysis algorithm (wrapper for ALGLIB).")] [Creatable("Data Analysis")] [StorableClass] public sealed class NearestNeighbourClassification : FixedDataAnalysisAlgorithm { private const string KParameterName = "K"; private const string NearestNeighbourClassificationModelResultName = "Nearest neighbour classification solution"; #region parameter properties public IFixedValueParameter KParameter { get { return (IFixedValueParameter)Parameters[KParameterName]; } } #endregion #region properties public int K { get { return KParameter.Value.Value; } set { if (value <= 0) throw new ArgumentException("K must be larger than zero.", "K"); else KParameter.Value.Value = value; } } #endregion [StorableConstructor] private NearestNeighbourClassification(bool deserializing) : base(deserializing) { } private NearestNeighbourClassification(NearestNeighbourClassification original, Cloner cloner) : base(original, cloner) { } public NearestNeighbourClassification() : base() { Parameters.Add(new FixedValueParameter(KParameterName, "The number of nearest neighbours to consider for regression.", new IntValue(3))); Problem = new ClassificationProblem(); } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { } public override IDeepCloneable Clone(Cloner cloner) { return new NearestNeighbourClassification(this, cloner); } #region nearest neighbour protected override void Run() { var solution = CreateNearestNeighbourClassificationSolution(Problem.ProblemData, K); Results.Add(new Result(NearestNeighbourClassificationModelResultName, "The nearest neighbour classification solution.", solution)); } public static IClassificationSolution CreateNearestNeighbourClassificationSolution(IClassificationProblemData problemData, int k) { Dataset dataset = problemData.Dataset; string targetVariable = problemData.TargetVariable; IEnumerable allowedInputVariables = problemData.AllowedInputVariables; IEnumerable rows = problemData.TrainingIndices; double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables.Concat(new string[] { targetVariable }), rows); if (inputMatrix.Cast().Any(x => double.IsNaN(x) || double.IsInfinity(x))) throw new NotSupportedException("Nearest neighbour classification does not support NaN or infinity values in the input dataset."); alglib.nearestneighbor.kdtree kdtree = new alglib.nearestneighbor.kdtree(); int nRows = inputMatrix.GetLength(0); int nFeatures = inputMatrix.GetLength(1) - 1; double[] classValues = dataset.GetDoubleValues(targetVariable).Distinct().OrderBy(x => x).ToArray(); int nClasses = classValues.Count(); // map original class values to values [0..nClasses-1] Dictionary classIndices = new Dictionary(); for (int i = 0; i < nClasses; i++) { classIndices[classValues[i]] = i; } for (int row = 0; row < nRows; row++) { inputMatrix[row, nFeatures] = classIndices[inputMatrix[row, nFeatures]]; } alglib.nearestneighbor.kdtreebuild(inputMatrix, nRows, inputMatrix.GetLength(1) - 1, 1, 2, kdtree); var problemDataClone = (IClassificationProblemData) problemData.Clone(); return new NearestNeighbourClassificationSolution(problemDataClone, new NearestNeighbourModel(kdtree, k, targetVariable, allowedInputVariables, problemDataClone.ClassValues.ToArray())); } #endregion } }