#region License Information
/* HeuristicLab
* Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Optimization;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Problems.DataAnalysis;
namespace HeuristicLab.Algorithms.DataAnalysis {
///
/// Multinomial logit regression data analysis algorithm.
///
[Item("Multinomial Logit Classification", "Multinomial logit classification data analysis algorithm (wrapper for ALGLIB).")]
[Creatable("Data Analysis")]
[StorableClass]
public sealed class MultiNomialLogitClassification : FixedDataAnalysisAlgorithm {
private const string LogitClassificationModelResultName = "Logit classification solution";
[StorableConstructor]
private MultiNomialLogitClassification(bool deserializing) : base(deserializing) { }
private MultiNomialLogitClassification(MultiNomialLogitClassification original, Cloner cloner)
: base(original, cloner) {
}
public MultiNomialLogitClassification()
: base() {
Problem = new ClassificationProblem();
}
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() { }
public override IDeepCloneable Clone(Cloner cloner) {
return new MultiNomialLogitClassification(this, cloner);
}
#region logit classification
protected override void Run() {
double rmsError, relClassError;
var solution = CreateLogitClassificationSolution(Problem.ProblemData, out rmsError, out relClassError);
Results.Add(new Result(LogitClassificationModelResultName, "The logit classification solution.", solution));
Results.Add(new Result("Root mean squared error", "The root of the mean of squared errors of the logit regression solution on the training set.", new DoubleValue(rmsError)));
Results.Add(new Result("Relative classification error", "Relative classification error on the training set (percentage of misclassified cases).", new PercentValue(relClassError)));
}
public static IClassificationSolution CreateLogitClassificationSolution(IClassificationProblemData problemData, out double rmsError, out double relClassError) {
Dataset dataset = problemData.Dataset;
string targetVariable = problemData.TargetVariable;
IEnumerable allowedInputVariables = problemData.AllowedInputVariables;
IEnumerable rows = problemData.TrainingIndices;
double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables.Concat(new string[] { targetVariable }), rows);
if (inputMatrix.Cast().Any(x => double.IsNaN(x) || double.IsInfinity(x)))
throw new NotSupportedException("Multinomial logit classification does not support NaN or infinity values in the input dataset.");
alglib.logitmodel lm = new alglib.logitmodel();
alglib.mnlreport rep = new alglib.mnlreport();
int nRows = inputMatrix.GetLength(0);
int nFeatures = inputMatrix.GetLength(1) - 1;
double[] classValues = dataset.GetDoubleValues(targetVariable).Distinct().OrderBy(x => x).ToArray();
int nClasses = classValues.Count();
// map original class values to values [0..nClasses-1]
Dictionary classIndices = new Dictionary();
for (int i = 0; i < nClasses; i++) {
classIndices[classValues[i]] = i;
}
for (int row = 0; row < nRows; row++) {
inputMatrix[row, nFeatures] = classIndices[inputMatrix[row, nFeatures]];
}
int info;
alglib.mnltrainh(inputMatrix, nRows, nFeatures, nClasses, out info, out lm, out rep);
if (info != 1) throw new ArgumentException("Error in calculation of logit classification solution");
rmsError = alglib.mnlrmserror(lm, inputMatrix, nRows);
relClassError = alglib.mnlrelclserror(lm, inputMatrix, nRows);
MultinomialLogitClassificationSolution solution = new MultinomialLogitClassificationSolution((IClassificationProblemData)problemData.Clone(), new MultinomialLogitModel(lm, targetVariable, allowedInputVariables, classValues));
return solution;
}
#endregion
}
}