#region License Information /* HeuristicLab * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Optimization; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Problems.DataAnalysis; namespace HeuristicLab.Algorithms.DataAnalysis { /// /// Multinomial logit regression data analysis algorithm. /// [Item("Multinomial Logit Classification", "Multinomial logit classification data analysis algorithm (wrapper for ALGLIB).")] [Creatable("Data Analysis")] [StorableClass] public sealed class MultiNomialLogitClassification : FixedDataAnalysisAlgorithm { private const string LogitClassificationModelResultName = "Logit classification solution"; [StorableConstructor] private MultiNomialLogitClassification(bool deserializing) : base(deserializing) { } private MultiNomialLogitClassification(MultiNomialLogitClassification original, Cloner cloner) : base(original, cloner) { } public MultiNomialLogitClassification() : base() { Problem = new ClassificationProblem(); } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { } public override IDeepCloneable Clone(Cloner cloner) { return new MultiNomialLogitClassification(this, cloner); } #region logit classification protected override void Run() { double rmsError, relClassError; var solution = CreateLogitClassificationSolution(Problem.ProblemData, out rmsError, out relClassError); Results.Add(new Result(LogitClassificationModelResultName, "The logit classification solution.", solution)); Results.Add(new Result("Root mean squared error", "The root of the mean of squared errors of the logit regression solution on the training set.", new DoubleValue(rmsError))); Results.Add(new Result("Relative classification error", "Relative classification error on the training set (percentage of misclassified cases).", new PercentValue(relClassError))); } public static IClassificationSolution CreateLogitClassificationSolution(IClassificationProblemData problemData, out double rmsError, out double relClassError) { Dataset dataset = problemData.Dataset; string targetVariable = problemData.TargetVariable; IEnumerable allowedInputVariables = problemData.AllowedInputVariables; IEnumerable rows = problemData.TrainingIndices; double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables.Concat(new string[] { targetVariable }), rows); if (inputMatrix.Cast().Any(x => double.IsNaN(x) || double.IsInfinity(x))) throw new NotSupportedException("Multinomial logit classification does not support NaN or infinity values in the input dataset."); alglib.logitmodel lm = new alglib.logitmodel(); alglib.mnlreport rep = new alglib.mnlreport(); int nRows = inputMatrix.GetLength(0); int nFeatures = inputMatrix.GetLength(1) - 1; double[] classValues = dataset.GetDoubleValues(targetVariable).Distinct().OrderBy(x => x).ToArray(); int nClasses = classValues.Count(); // map original class values to values [0..nClasses-1] Dictionary classIndices = new Dictionary(); for (int i = 0; i < nClasses; i++) { classIndices[classValues[i]] = i; } for (int row = 0; row < nRows; row++) { inputMatrix[row, nFeatures] = classIndices[inputMatrix[row, nFeatures]]; } int info; alglib.mnltrainh(inputMatrix, nRows, nFeatures, nClasses, out info, out lm, out rep); if (info != 1) throw new ArgumentException("Error in calculation of logit classification solution"); rmsError = alglib.mnlrmserror(lm, inputMatrix, nRows); relClassError = alglib.mnlrelclserror(lm, inputMatrix, nRows); MultinomialLogitClassificationSolution solution = new MultinomialLogitClassificationSolution((IClassificationProblemData)problemData.Clone(), new MultinomialLogitModel(lm, targetVariable, allowedInputVariables, classValues)); return solution; } #endregion } }