#region License Information
/* HeuristicLab
* Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Algorithms.DataAnalysis {
[StorableClass]
[Item(Name = "CovarianceMaternIso",
Description = "Matern covariance function for Gaussian processes.")]
public sealed class CovarianceMaternIso : ParameterizedNamedItem, ICovarianceFunction {
public IValueParameter InverseLengthParameter {
get { return (IValueParameter)Parameters["InverseLength"]; }
}
public IValueParameter ScaleParameter {
get { return (IValueParameter)Parameters["Scale"]; }
}
public IConstrainedValueParameter DParameter {
get { return (IConstrainedValueParameter)Parameters["D"]; }
}
[StorableConstructor]
private CovarianceMaternIso(bool deserializing)
: base(deserializing) {
}
private CovarianceMaternIso(CovarianceMaternIso original, Cloner cloner)
: base(original, cloner) {
}
public CovarianceMaternIso()
: base() {
Name = ItemName;
Description = ItemDescription;
Parameters.Add(new OptionalValueParameter("InverseLength", "The inverse length parameter of the isometric Matern covariance function."));
Parameters.Add(new OptionalValueParameter("Scale", "The scale parameter of the isometric Matern covariance function."));
var validDValues = new ItemSet();
validDValues.Add((IntValue)new IntValue(1).AsReadOnly());
validDValues.Add((IntValue)new IntValue(3).AsReadOnly());
validDValues.Add((IntValue)new IntValue(5).AsReadOnly());
Parameters.Add(new ConstrainedValueParameter("D", "The d parameter (allowed values: 1, 3, or 5) of the isometric Matern covariance function.", validDValues, validDValues.First()));
}
public override IDeepCloneable Clone(Cloner cloner) {
return new CovarianceMaternIso(this, cloner);
}
public int GetNumberOfParameters(int numberOfVariables) {
return
(InverseLengthParameter.Value != null ? 0 : 1) +
(ScaleParameter.Value != null ? 0 : 1);
}
public void SetParameter(double[] p) {
double inverseLength, scale;
GetParameterValues(p, out scale, out inverseLength);
InverseLengthParameter.Value = new DoubleValue(inverseLength);
ScaleParameter.Value = new DoubleValue(scale);
}
private void GetParameterValues(double[] p, out double scale, out double inverseLength) {
// gather parameter values
int c = 0;
if (InverseLengthParameter.Value != null) {
inverseLength = InverseLengthParameter.Value.Value;
} else {
inverseLength = 1.0 / Math.Exp(p[c]);
c++;
}
if (ScaleParameter.Value != null) {
scale = ScaleParameter.Value.Value;
} else {
scale = Math.Exp(2 * p[c]);
c++;
}
if (p.Length != c) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovarianceMaternIso", "p");
}
public ParameterizedCovarianceFunction GetParameterizedCovarianceFunction(double[] p, IEnumerable columnIndices) {
double inverseLength, scale;
int d = DParameter.Value.Value;
GetParameterValues(p, out scale, out inverseLength);
// create functions
var cov = new ParameterizedCovarianceFunction();
cov.Covariance = (x, i, j) => {
double dist = i == j
? 0.0
: Math.Sqrt(Util.SqrDist(x, i, j, Math.Sqrt(d) * inverseLength, columnIndices));
return scale * m(d, dist);
};
cov.CrossCovariance = (x, xt, i, j) => {
double dist = Math.Sqrt(Util.SqrDist(x, i, xt, j, Math.Sqrt(d) * inverseLength, columnIndices));
return scale * m(d, dist);
};
cov.CovarianceGradient = (x, i, j) => GetGradient(x, i, j, d, scale, inverseLength, columnIndices);
return cov;
}
private static double m(int d, double t) {
double f;
switch (d) {
case 1: { f = 1; break; }
case 3: { f = 1 + t; break; }
case 5: { f = 1 + t * (1 + t / 3.0); break; }
default: throw new InvalidOperationException();
}
return f * Math.Exp(-t);
}
private static double dm(int d, double t) {
double df;
switch (d) {
case 1: { df = 1; break; }
case 3: { df = t; break; }
case 5: { df = t * (1 + t) / 3.0; break; }
default: throw new InvalidOperationException();
}
return df * t * Math.Exp(-t);
}
private static IEnumerable GetGradient(double[,] x, int i, int j, int d, double scale, double inverseLength, IEnumerable columnIndices) {
double dist = i == j
? 0.0
: Math.Sqrt(Util.SqrDist(x, i, j, Math.Sqrt(d) * inverseLength, columnIndices));
yield return scale * dm(d, dist);
yield return 2 * scale * m(d, dist);
}
}
}