#region License Information /* HeuristicLab * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Algorithms.DataAnalysis { [StorableClass] [Item(Name = "CovarianceMaternIso", Description = "Matern covariance function for Gaussian processes.")] public sealed class CovarianceMaternIso : ParameterizedNamedItem, ICovarianceFunction { public IValueParameter InverseLengthParameter { get { return (IValueParameter)Parameters["InverseLength"]; } } public IValueParameter ScaleParameter { get { return (IValueParameter)Parameters["Scale"]; } } public IConstrainedValueParameter DParameter { get { return (IConstrainedValueParameter)Parameters["D"]; } } [StorableConstructor] private CovarianceMaternIso(bool deserializing) : base(deserializing) { } private CovarianceMaternIso(CovarianceMaternIso original, Cloner cloner) : base(original, cloner) { } public CovarianceMaternIso() : base() { Name = ItemName; Description = ItemDescription; Parameters.Add(new OptionalValueParameter("InverseLength", "The inverse length parameter of the isometric Matern covariance function.")); Parameters.Add(new OptionalValueParameter("Scale", "The scale parameter of the isometric Matern covariance function.")); var validDValues = new ItemSet(); validDValues.Add((IntValue)new IntValue(1).AsReadOnly()); validDValues.Add((IntValue)new IntValue(3).AsReadOnly()); validDValues.Add((IntValue)new IntValue(5).AsReadOnly()); Parameters.Add(new ConstrainedValueParameter("D", "The d parameter (allowed values: 1, 3, or 5) of the isometric Matern covariance function.", validDValues, validDValues.First())); } public override IDeepCloneable Clone(Cloner cloner) { return new CovarianceMaternIso(this, cloner); } public int GetNumberOfParameters(int numberOfVariables) { return (InverseLengthParameter.Value != null ? 0 : 1) + (ScaleParameter.Value != null ? 0 : 1); } public void SetParameter(double[] p) { double inverseLength, scale; GetParameterValues(p, out scale, out inverseLength); InverseLengthParameter.Value = new DoubleValue(inverseLength); ScaleParameter.Value = new DoubleValue(scale); } private void GetParameterValues(double[] p, out double scale, out double inverseLength) { // gather parameter values int c = 0; if (InverseLengthParameter.Value != null) { inverseLength = InverseLengthParameter.Value.Value; } else { inverseLength = 1.0 / Math.Exp(p[c]); c++; } if (ScaleParameter.Value != null) { scale = ScaleParameter.Value.Value; } else { scale = Math.Exp(2 * p[c]); c++; } if (p.Length != c) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovarianceMaternIso", "p"); } public ParameterizedCovarianceFunction GetParameterizedCovarianceFunction(double[] p, IEnumerable columnIndices) { double inverseLength, scale; int d = DParameter.Value.Value; GetParameterValues(p, out scale, out inverseLength); // create functions var cov = new ParameterizedCovarianceFunction(); cov.Covariance = (x, i, j) => { double dist = i == j ? 0.0 : Math.Sqrt(Util.SqrDist(x, i, j, Math.Sqrt(d) * inverseLength, columnIndices)); return scale * m(d, dist); }; cov.CrossCovariance = (x, xt, i, j) => { double dist = Math.Sqrt(Util.SqrDist(x, i, xt, j, Math.Sqrt(d) * inverseLength, columnIndices)); return scale * m(d, dist); }; cov.CovarianceGradient = (x, i, j) => GetGradient(x, i, j, d, scale, inverseLength, columnIndices); return cov; } private static double m(int d, double t) { double f; switch (d) { case 1: { f = 1; break; } case 3: { f = 1 + t; break; } case 5: { f = 1 + t * (1 + t / 3.0); break; } default: throw new InvalidOperationException(); } return f * Math.Exp(-t); } private static double dm(int d, double t) { double df; switch (d) { case 1: { df = 1; break; } case 3: { df = t; break; } case 5: { df = t * (1 + t) / 3.0; break; } default: throw new InvalidOperationException(); } return df * t * Math.Exp(-t); } private static IEnumerable GetGradient(double[,] x, int i, int j, int d, double scale, double inverseLength, IEnumerable columnIndices) { double dist = i == j ? 0.0 : Math.Sqrt(Util.SqrDist(x, i, j, Math.Sqrt(d) * inverseLength, columnIndices)); yield return scale * dm(d, dist); yield return 2 * scale * m(d, dist); } } }