Free cookie consent management tool by TermsFeed Policy Generator

source: branches/NCA/HeuristicLab.Algorithms.NCA/3.3/NeighborhoodComponentsAnalysis.cs @ 8441

Last change on this file since 8441 was 8441, checked in by abeham, 13 years ago

#1913: added quality output

File size: 10.8 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Algorithms.DataAnalysis;
26using HeuristicLab.Analysis;
27using HeuristicLab.Common;
28using HeuristicLab.Core;
29using HeuristicLab.Data;
30using HeuristicLab.Optimization;
31using HeuristicLab.Parameters;
32using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
33using HeuristicLab.PluginInfrastructure;
34using HeuristicLab.Problems.DataAnalysis;
35
36namespace HeuristicLab.Algorithms.NCA {
37  public delegate void Reporter(double quality, double[] coefficients);
38  /// <summary>
39  /// Neighborhood Components Analysis
40  /// </summary>
41  [Item("Neighborhood Components Analysis", "NCA is described in J. Goldberger, S. Roweis, G. Hinton, R. Salakhutdinov. 2005. Neighbourhood Component Analysis. Advances in Neural Information Processing Systems, 17. pp. 513-520.")]
42  [Creatable("Data Analysis")]
43  [StorableClass]
44  public sealed class NeighborhoodComponentsAnalysis : FixedDataAnalysisAlgorithm<IClassificationProblem> {
45    #region Parameter Properties
46    public IValueLookupParameter<IntValue> KParameter {
47      get { return (IValueLookupParameter<IntValue>)Parameters["k"]; }
48    }
49    public IValueLookupParameter<IntValue> ReduceDimensionsParameter {
50      get { return (IValueLookupParameter<IntValue>)Parameters["ReduceDimensions"]; }
51    }
52    private IConstrainedValueParameter<INCAInitializer> InitializationParameter {
53      get { return (IConstrainedValueParameter<INCAInitializer>)Parameters["Initialization"]; }
54    }
55    #endregion
56
57    #region Properties
58    public IntValue K {
59      get { return KParameter.Value; }
60    }
61    public IntValue ReduceDimensions {
62      get { return ReduceDimensionsParameter.Value; }
63    }
64    #endregion
65
66    [StorableConstructor]
67    private NeighborhoodComponentsAnalysis(bool deserializing) : base(deserializing) { }
68    private NeighborhoodComponentsAnalysis(NeighborhoodComponentsAnalysis original, Cloner cloner) : base(original, cloner) { }
69    public NeighborhoodComponentsAnalysis()
70      : base() {
71      Parameters.Add(new ValueLookupParameter<IntValue>("k", "The k for the nearest neighbor.", new IntValue(1)));
72      Parameters.Add(new ValueLookupParameter<IntValue>("ReduceDimensions", "The number of dimensions that NCA should reduce the data to.", new IntValue(2)));
73      Parameters.Add(new ConstrainedValueParameter<INCAInitializer>("Initialization", "Which method should be used to initialize the matrix. Typically LDA (linear discriminant analysis) should provide a good estimate."));
74
75      INCAInitializer defaultInitializer = null;
76      foreach (var initializer in ApplicationManager.Manager.GetInstances<INCAInitializer>().OrderBy(x => x.ItemName)) {
77        if (initializer is LDAInitializer) defaultInitializer = initializer;
78        InitializationParameter.ValidValues.Add(initializer);
79      }
80      if (defaultInitializer != null) InitializationParameter.Value = defaultInitializer;
81
82      Problem = new ClassificationProblem();
83    }
84
85    public override IDeepCloneable Clone(Cloner cloner) {
86      return new NeighborhoodComponentsAnalysis(this, cloner);
87    }
88
89    public override void Prepare() {
90      if (Problem != null) base.Prepare();
91    }
92
93    protected override void Run() {
94      var k = K.Value;
95      var dimensions = ReduceDimensions.Value;
96      var initializer = InitializationParameter.Value;
97
98      var clonedProblem = (IClassificationProblemData)Problem.ProblemData.Clone();
99      var model = Train(clonedProblem, k, dimensions, initializer, ReportQuality);
100      var classification = new NCAClassificationSolution(clonedProblem, model);
101      Results.Add(new Result("ClassificationSolution", "The classification solution.", classification));
102    }
103
104    private void ReportQuality(double func, double[] coefficients) {
105      var instances = Problem.ProblemData.TrainingIndices.Count();
106      DataTable qualities;
107      if (!Results.ContainsKey("Optimization")) {
108        qualities = new DataTable("Optimization");
109        qualities.Rows.Add(new DataRow("Quality", string.Empty));
110        Results.Add(new Result("Optimization", qualities));
111      } else qualities = (DataTable)Results["Optimization"].Value;
112      qualities.Rows["Quality"].Values.Add(-func / instances);
113
114      if (!Results.ContainsKey("Quality")) {
115        Results.Add(new Result("Quality", new DoubleValue(-func / instances)));
116      } else ((DoubleValue)Results["Quality"].Value).Value = -func / instances;
117    }
118
119    public static INCAModel Train(IClassificationProblemData data, int k, int dimensions, INCAInitializer initializer, Reporter reporter = null) {
120      var instances = data.TrainingIndices.Count();
121      var attributes = data.AllowedInputVariables.Count();
122
123      double[] matrix = initializer.Initialize(data, dimensions);
124
125      var info = new OptimizationInfo(data, dimensions, reporter);
126      alglib.mincgstate state;
127      alglib.mincgreport rep;
128
129      alglib.mincgcreate(matrix, out state);
130      alglib.mincgsetcond(state, 0, 1e-05, 0, 20);
131      alglib.mincgsetxrep(state, true);
132      alglib.mincgoptimize(state, Gradient, Report, info);
133      alglib.mincgresults(state, out matrix, out rep);
134
135      var transformationMatrix = new double[attributes, dimensions];
136      var counter = 0;
137      for (var i = 0; i < attributes; i++)
138        for (var j = 0; j < dimensions; j++)
139          transformationMatrix[i, j] = matrix[counter++];
140
141      var transformedTrainingset = new double[instances, dimensions];
142      var rowCount = 0;
143      foreach (var r in data.TrainingIndices) {
144        var i = 0;
145        foreach (var v in data.AllowedInputVariables) {
146          var val = data.Dataset.GetDoubleValue(v, r);
147          for (var j = 0; j < dimensions; j++)
148            transformedTrainingset[rowCount, j] += val * transformationMatrix[i, j];
149          i++;
150        }
151        rowCount++;
152      }
153
154      var ds = data.Dataset;
155      var targetVariable = data.TargetVariable;
156      return new NCAModel(transformedTrainingset, info.Scaling, transformationMatrix, k, data.TargetVariable, data.AllowedInputVariables,
157        data.TrainingIndices.Select(i => ds.GetDoubleValue(targetVariable, i)).ToArray());
158    }
159
160    private static void Report(double[] A, double func, object obj) {
161      var info = (OptimizationInfo)obj;
162      if (info.Reporter != null) info.Reporter(func, A);
163    }
164
165    private static void Gradient(double[] A, ref double func, double[] grad, object obj) {
166      var info = (OptimizationInfo)obj;
167      var data = info.Data;
168      var classes = info.TargetValues;
169      var instances = info.Instances;
170      var attributes = info.Attributes;
171
172      var AMatrix = new Matrix(A, A.Length / info.ReduceDimensions, info.ReduceDimensions);
173
174      alglib.sparsematrix probabilities;
175      alglib.sparsecreate(instances, instances, out probabilities);
176      var transformedDistances = new double[instances];
177      for (int i = 0; i < instances - 1; i++) {
178        var iVector = new Matrix(GetRow(data, i), data.GetLength(1));
179        var denom = 0.0;
180        for (int k = 0; k < instances; k++) {
181          if (k == i) continue;
182          var kVector = new Matrix(GetRow(data, k));
183          transformedDistances[k] = Math.Exp(-iVector.Multiply(AMatrix).Subtract(kVector.Multiply(AMatrix)).SquaredVectorLength());
184          denom += transformedDistances[k];
185        }
186        if (denom > 1e-05) {
187          for (int j = i + 1; j < instances; j++) {
188            if (i == j) continue;
189            var v = transformedDistances[j] / denom;
190            alglib.sparseset(probabilities, i, j, v);
191          }
192        }
193      }
194      alglib.sparseconverttocrs(probabilities); // needed to enumerate in order (top-down and left-right)
195
196      int t0 = 0, t1 = 0, r, c;
197      double val;
198      var pi = new double[instances];
199      while (alglib.sparseenumerate(probabilities, ref t0, ref t1, out r, out c, out val)) {
200        if (classes[r].IsAlmost(classes[c])) {
201          pi[r] += val;
202        }
203      }
204
205      var innerSum = new double[attributes, attributes];
206      while (alglib.sparseenumerate(probabilities, ref t0, ref t1, out r, out c, out val)) {
207        var vector = new Matrix(GetRow(data, r)).Subtract(new Matrix(GetRow(data, c)));
208        vector.OuterProduct(vector).Multiply(2.0 * val * pi[r]).AddTo(innerSum);
209
210        if (classes[r].IsAlmost(classes[c])) {
211          vector.OuterProduct(vector).Multiply(-2.0 * val).AddTo(innerSum);
212        }
213      }
214
215      func = -2.0 * pi.Sum();
216
217      r = 0;
218      var newGrad = AMatrix.Multiply(-2.0).Transpose().Multiply(new Matrix(innerSum)).Transpose();
219      foreach (var g in newGrad) {
220        grad[r++] = g;
221      }
222    }
223
224    #region Helpers
225    private static IEnumerable<double> GetRow(double[,] data, int row) {
226      for (int i = 0; i < data.GetLength(1); i++)
227        yield return data[row, i];
228    }
229
230    private class OptimizationInfo {
231      public Scaling Scaling { get; private set; }
232      public double[,] Data { get; private set; }
233      public double[] TargetValues { get; private set; }
234      public int ReduceDimensions { get; private set; }
235      public int Instances { get; private set; }
236      public int Attributes { get; private set; }
237      public Reporter Reporter { get; private set; }
238
239      public OptimizationInfo(IClassificationProblemData data, int reduceDimensions, Reporter reporter) {
240        this.Scaling = new Scaling(data.Dataset, data.AllowedInputVariables, data.TrainingIndices);
241        this.Data = AlglibUtil.PrepareAndScaleInputMatrix(data.Dataset, data.AllowedInputVariables, data.TrainingIndices, Scaling);
242        this.TargetValues = data.Dataset.GetDoubleValues(data.TargetVariable, data.TrainingIndices).ToArray();
243        this.ReduceDimensions = reduceDimensions;
244        this.Instances = data.TrainingIndices.Count();
245        this.Attributes = data.AllowedInputVariables.Count();
246        this.Reporter = reporter;
247      }
248    }
249    #endregion
250  }
251}
Note: See TracBrowser for help on using the repository browser.