#region License Information /* HeuristicLab * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Collections.Generic; using System.Linq; using HeuristicLab.Algorithms.DataAnalysis; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Problems.DataAnalysis; namespace HeuristicLab.Algorithms.NCA { [Item("NCAModel", "")] [StorableClass] public class NCAModel : NamedItem, INCAModel { [Storable] private Scaling scaling; [Storable] private double[,] transformationMatrix; public double[,] TransformationMatrix { get { return (double[,])transformationMatrix.Clone(); } } [Storable] private string[] allowedInputVariables; [Storable] private string targetVariable; [Storable] private INearestNeighbourModel nnModel; [Storable] private Dictionary nn2ncaClassMapping; [Storable] private Dictionary nca2nnClassMapping; [StorableConstructor] protected NCAModel(bool deserializing) : base(deserializing) { } protected NCAModel(NCAModel original, Cloner cloner) : base(original, cloner) { this.scaling = cloner.Clone(original.scaling); this.transformationMatrix = (double[,])original.transformationMatrix.Clone(); this.allowedInputVariables = (string[])original.allowedInputVariables.Clone(); this.targetVariable = original.targetVariable; this.nnModel = cloner.Clone(original.nnModel); this.nn2ncaClassMapping = original.nn2ncaClassMapping.ToDictionary(x => x.Key, y => y.Value); this.nca2nnClassMapping = original.nca2nnClassMapping.ToDictionary(x => x.Key, y => y.Value); } public NCAModel(int k, double[,] scaledData, Scaling scaling, double[,] transformationMatrix, string targetVariable, IEnumerable targetVector, IEnumerable allowedInputVariables) { Name = ItemName; Description = ItemDescription; this.scaling = scaling; this.transformationMatrix = transformationMatrix; this.allowedInputVariables = allowedInputVariables.ToArray(); this.targetVariable = targetVariable; nca2nnClassMapping = targetVector.Distinct().OrderBy(x => x).Select((v, i) => new { Index = (double)i, Class = v }).ToDictionary(x => x.Class, y => y.Index); nn2ncaClassMapping = nca2nnClassMapping.ToDictionary(x => x.Value, y => y.Key); var transformedData = ReduceWithTarget(scaledData, targetVector.Select(x => nca2nnClassMapping[x])); var kdtree = new alglib.nearestneighbor.kdtree(); alglib.nearestneighbor.kdtreebuild(transformedData, transformedData.GetLength(0), transformedData.GetLength(1) - 1, 1, 2, kdtree); nnModel = new NearestNeighbourModel(kdtree, k, targetVariable, Enumerable.Range(0, transformationMatrix.GetLength(1)).Select(x => x.ToString()), nn2ncaClassMapping.Keys.ToArray()); } public override IDeepCloneable Clone(Cloner cloner) { return new NCAModel(this, cloner); } public IEnumerable GetEstimatedClassValues(Dataset dataset, IEnumerable rows) { var unknownClasses = dataset.GetDoubleValues(targetVariable, rows).Where(x => !nca2nnClassMapping.ContainsKey(x)); if (unknownClasses.Any()) foreach (var uc in unknownClasses) { nca2nnClassMapping[uc] = nca2nnClassMapping.Count; nn2ncaClassMapping[nca2nnClassMapping[uc]] = uc; } var transformedData = ReduceWithTarget(dataset, rows, dataset.GetDoubleValues(targetVariable, rows).Select(x => nca2nnClassMapping[x])); var ds = new Dataset(Enumerable.Range(0, transformationMatrix.GetLength(1)).Select(x => x.ToString()).Concat(targetVariable.ToEnumerable()), transformedData); return nnModel.GetEstimatedClassValues(ds, Enumerable.Range(0, ds.Rows)).Select(x => nn2ncaClassMapping[x]); } public NCAClassificationSolution CreateClassificationSolution(IClassificationProblemData problemData) { return new NCAClassificationSolution(problemData, this); } IClassificationSolution IClassificationModel.CreateClassificationSolution(IClassificationProblemData problemData) { return CreateClassificationSolution(problemData); } public double[,] Reduce(Dataset dataset, IEnumerable rows) { var scaledData = AlglibUtil.PrepareAndScaleInputMatrix(dataset, allowedInputVariables, rows, scaling); return Reduce(scaledData); } private double[,] Reduce(double[,] scaledData) { var result = new double[scaledData.GetLength(0), transformationMatrix.GetLength(1)]; for (int i = 0; i < scaledData.GetLength(0); i++) for (int j = 0; j < scaledData.GetLength(1); j++) for (int x = 0; x < transformationMatrix.GetLength(1); x++) { result[i, x] += scaledData[i, j] * transformationMatrix[j, x]; } return result; } private double[,] ReduceWithTarget(Dataset dataset, IEnumerable rows, IEnumerable targetValues) { var scaledData = AlglibUtil.PrepareAndScaleInputMatrix(dataset, allowedInputVariables, rows, scaling); return ReduceWithTarget(scaledData, targetValues); } private double[,] ReduceWithTarget(double[,] scaledData, IEnumerable targetValues) { var result = new double[scaledData.GetLength(0), transformationMatrix.GetLength(1) + 1]; for (int i = 0; i < scaledData.GetLength(0); i++) for (int j = 0; j < scaledData.GetLength(1); j++) for (int x = 0; x < transformationMatrix.GetLength(1); x++) { result[i, x] += scaledData[i, j] * transformationMatrix[j, x]; } int r = 0; foreach (var d in targetValues) result[r++, transformationMatrix.GetLength(1)] = d; return result; } } }