#region License Information /* HeuristicLab * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Algorithms.DataAnalysis; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Problems.DataAnalysis; namespace HeuristicLab.Algorithms.NCA { [Item("NCAModel", "")] [StorableClass] public class NCAModel : NamedItem, INCAModel { [Storable] private string targetVariable; [Storable] private string[] allowedInputVariables; [Storable] private double[] classValues; /// /// Get a clone of the class values /// public double[] ClassValues { get { return (double[])classValues.Clone(); } } [Storable] private int k; [Storable] private double[,] transformationMatrix; /// /// Get a clone of the transformation matrix /// public double[,] TransformationMatrix { get { return (double[,])transformationMatrix.Clone(); } } [Storable] private double[,] transformedTrainingset; /// /// Get a clone of the transformed trainingset /// public double[,] TransformedTrainingset { get { return (double[,])transformedTrainingset.Clone(); } } [Storable] private Scaling scaling; [StorableConstructor] protected NCAModel(bool deserializing) : base(deserializing) { } protected NCAModel(NCAModel original, Cloner cloner) : base(original, cloner) { k = original.k; targetVariable = original.targetVariable; allowedInputVariables = (string[])original.allowedInputVariables.Clone(); if (original.classValues != null) this.classValues = (double[])original.classValues.Clone(); if (original.transformationMatrix != null) this.transformationMatrix = (double[,])original.transformationMatrix.Clone(); if (original.transformedTrainingset != null) this.transformedTrainingset = (double[,])original.transformedTrainingset.Clone(); this.scaling = cloner.Clone(original.scaling); } public NCAModel(double[,] transformedTrainingset, Scaling scaling, double[,] transformationMatrix, int k, string targetVariable, IEnumerable allowedInputVariables, double[] classValues = null) : base() { this.name = ItemName; this.description = ItemDescription; this.transformedTrainingset = transformedTrainingset; this.scaling = scaling; this.transformationMatrix = transformationMatrix; this.k = k; this.targetVariable = targetVariable; this.allowedInputVariables = allowedInputVariables.ToArray(); if (classValues != null) this.classValues = (double[])classValues.Clone(); } public override IDeepCloneable Clone(Cloner cloner) { return new NCAModel(this, cloner); } public IEnumerable GetEstimatedClassValues(Dataset dataset, IEnumerable rows) { var k = Math.Min(this.k, transformedTrainingset.GetLength(0)); var transformedRow = new double[transformationMatrix.GetLength(1)]; var kVotes = new SortedList(k + 1); foreach (var r in rows) { for (int i = 0; i < transformedRow.Length; i++) transformedRow[i] = 0; int j = 0; foreach (var v in allowedInputVariables) { var values = scaling.GetScaledValues(dataset, v, rows); double val = dataset.GetDoubleValue(v, r); for (int i = 0; i < transformedRow.Length; i++) transformedRow[i] += val * transformationMatrix[j, i]; j++; } kVotes.Clear(); for (int a = 0; a < transformedTrainingset.GetLength(0); a++) { double d = 0; for (int y = 0; y < transformedRow.Length; y++) { d += (transformedRow[y] - transformedTrainingset[a, y]) * (transformedRow[y] - transformedTrainingset[a, y]); } while (kVotes.ContainsKey(d)) d += 1e-12; if (kVotes.Count <= k || kVotes.Last().Key > d) { kVotes.Add(d, classValues[a]); if (kVotes.Count > k) kVotes.RemoveAt(kVotes.Count - 1); } } yield return kVotes.Values.ToLookup(x => x).MaxItems(x => x.Count()).First().Key; } } public NCAClassificationSolution CreateClassificationSolution(IClassificationProblemData problemData) { return new NCAClassificationSolution(problemData, this); } IClassificationSolution IClassificationModel.CreateClassificationSolution(IClassificationProblemData problemData) { return CreateClassificationSolution(problemData); } public double[,] Reduce(Dataset dataset, IEnumerable rows) { var result = new double[rows.Count(), transformationMatrix.GetLength(1)]; int v = 0; foreach (var r in rows) { int i = 0; foreach (var variable in allowedInputVariables) { double val = dataset.GetDoubleValue(variable, r); for (int j = 0; j < result.GetLength(1); j++) result[v, j] += val * transformationMatrix[i, j]; i++; } v++; } return result; } } }