#region License Information
/* HeuristicLab
* Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Linq;
using HeuristicLab.Algorithms.DataAnalysis;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.PluginInfrastructure;
using HeuristicLab.Problems.DataAnalysis;
namespace HeuristicLab.Algorithms.NCA {
///
/// Neighborhood Components Analysis
///
[Item("NCA", "Neihborhood Components Analysis is described in J. Goldberger, S. Roweis, G. Hinton, R. Salakhutdinov. 2005. Neighbourhood Component Analysis. Advances in Neural Information Processing Systems, 17. pp. 513-520.")]
[Creatable("Data Analysis")]
[StorableClass]
public sealed class NCA : FixedDataAnalysisAlgorithm {
#region Parameter Properties
public IValueLookupParameter KParameter {
get { return (IValueLookupParameter)Parameters["k"]; }
}
public IValueLookupParameter ReduceDimensionsParameter {
get { return (IValueLookupParameter)Parameters["ReduceDimensions"]; }
}
private IConstrainedValueParameter InitializationParameter {
get { return (IConstrainedValueParameter)Parameters["Initialization"]; }
}
#endregion
#region Properties
public IntValue K {
get { return KParameter.Value; }
}
public IntValue ReduceDimensions {
get { return ReduceDimensionsParameter.Value; }
}
#endregion
[StorableConstructor]
private NCA(bool deserializing) : base(deserializing) { }
private NCA(NCA original, Cloner cloner) : base(original, cloner) { }
public NCA()
: base() {
Parameters.Add(new ValueLookupParameter("k", "The k for the nearest neighbor.", new IntValue(1)));
Parameters.Add(new ValueLookupParameter("ReduceDimensions", "The number of dimensions that NCA should reduce the data to.", new IntValue(2)));
Parameters.Add(new ConstrainedValueParameter("Initialization", "Which method should be used to initialize the matrix. Typically LDA (linear discriminant analysis) should provide a good estimate."));
INCAInitializer defaultInitializer = null;
foreach (var initializer in ApplicationManager.Manager.GetInstances().OrderBy(x => x.ItemName)) {
if (initializer is LDAInitializer) defaultInitializer = initializer;
InitializationParameter.ValidValues.Add(initializer);
}
if (defaultInitializer != null) InitializationParameter.Value = defaultInitializer;
Problem = new ClassificationProblem();
}
public override IDeepCloneable Clone(Cloner cloner) {
return new NCA(this, cloner);
}
public override void Prepare() {
if (Problem != null) base.Prepare();
}
protected override void Run() {
var classification = NeighborhoodComponentsAnalysis.CreateNCASolution(Problem.ProblemData, K.Value, ReduceDimensions.Value, InitializationParameter.Value);
Results.Add(new Result("ClassificationSolution", "The classification solution.", classification));
}
}
}