#region License Information
/* HeuristicLab
* Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Linq;
using System.Windows.Forms;
using HeuristicLab.Common;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Views;
using HeuristicLab.MainForm.WindowsForms;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Views {
public abstract partial class InteractiveSymbolicDataAnalysisSolutionSimplifierView : AsynchronousContentView {
private Dictionary foldedNodes;
private Dictionary changedNodes;
private Dictionary nodeImpacts;
private enum TreeState { Valid, Invalid }
private TreeState treeState;
protected InteractiveSymbolicDataAnalysisSolutionSimplifierView() {
InitializeComponent();
foldedNodes = new Dictionary();
changedNodes = new Dictionary();
nodeImpacts = new Dictionary();
this.Caption = "Interactive Solution Simplifier";
// initialize the tree modifier that will be used to perform edit operations over the tree
treeChart.ModifyTree = Modify;
}
///
/// Remove, Replace or Insert subtrees
///
/// The symbolic expression tree
/// The insertion point (ie, the parent node who will receive a new child)
/// The subtree to be replaced
/// The replacement subtree
/// Flag used to indicate if whole subtrees should be removed (default behavior), or just the subtree root
private void Modify(ISymbolicExpressionTree tree, ISymbolicExpressionTreeNode parent,
ISymbolicExpressionTreeNode oldChild, ISymbolicExpressionTreeNode newChild, bool removeSubtree = true) {
if (oldChild == null && newChild == null)
throw new ArgumentNullException("Cannot deduce operation type from the arguments. Please provide non null operands.");
if (oldChild == null) {
// insertion operation
parent.AddSubtree(newChild);
newChild.Parent = parent;
} else if (newChild == null) {
// removal operation
parent.RemoveSubtree(parent.IndexOfSubtree(oldChild));
if (!removeSubtree) {
for (int i = oldChild.SubtreeCount - 1; i >= 0; --i) {
var subtree = oldChild.GetSubtree(i);
oldChild.RemoveSubtree(i);
parent.AddSubtree(subtree);
}
}
} else {
// replacement operation
var replacementIndex = parent.IndexOfSubtree(oldChild);
parent.RemoveSubtree(replacementIndex);
parent.InsertSubtree(replacementIndex, newChild);
newChild.Parent = parent;
if (changedNodes.ContainsKey(oldChild)) {
changedNodes.Add(newChild, changedNodes[oldChild]); // so that on double click the original node is restored
changedNodes.Remove(oldChild);
} else {
changedNodes.Add(newChild, oldChild);
}
}
treeState = IsValid(tree) ? TreeState.Valid : TreeState.Invalid;
switch (treeState) {
case TreeState.Valid:
this.grpViewHost.Enabled = true;
UpdateModel(Content.Model.SymbolicExpressionTree);
break;
case TreeState.Invalid:
this.grpViewHost.Enabled = false;
break;
}
}
// the optimizer always assumes 2 children for multiplication and addition nodes
// thus, we enforce that the tree stays valid so that the constant optimization won't throw an exception
// by returning 2 as the minimum allowed arity for addition and multiplication symbols
private readonly Func GetMinArity = symbol => {
var min = symbol.MinimumArity;
if (symbol is Multiplication || symbol is Division) return Math.Max(2, min);
return min;
};
private bool IsValid(ISymbolicExpressionTree tree) {
treeChart.Tree = tree;
treeChart.Repaint();
// check if all nodes have a legal arity
var nodes = tree.IterateNodesPostfix().ToList();
bool valid = !nodes.Any(node => node.SubtreeCount < GetMinArity(node.Symbol) || node.SubtreeCount > node.Symbol.MaximumArity);
if (valid) {
// check if all variables are contained in the dataset
var variables = new HashSet(Content.ProblemData.Dataset.DoubleVariables);
valid = nodes.OfType().All(x => variables.Contains(x.VariableName));
}
if (valid) {
btnOptimizeConstants.Enabled = true;
btnSimplify.Enabled = true;
treeStatusValue.Visible = false;
} else {
btnOptimizeConstants.Enabled = false;
btnSimplify.Enabled = false;
treeStatusValue.Visible = true;
}
this.Refresh();
return valid;
}
public new ISymbolicDataAnalysisSolution Content {
get { return (ISymbolicDataAnalysisSolution)base.Content; }
set { base.Content = value; }
}
protected override void RegisterContentEvents() {
base.RegisterContentEvents();
Content.ModelChanged += Content_Changed;
Content.ProblemDataChanged += Content_Changed;
treeChart.Repainted += treeChart_Repainted;
}
protected override void DeregisterContentEvents() {
base.DeregisterContentEvents();
Content.ModelChanged -= Content_Changed;
Content.ProblemDataChanged -= Content_Changed;
treeChart.Repainted -= treeChart_Repainted;
}
private void Content_Changed(object sender, EventArgs e) {
UpdateView();
}
protected override void OnContentChanged() {
base.OnContentChanged();
foldedNodes = new Dictionary();
UpdateView();
viewHost.Content = this.Content;
}
private void treeChart_Repainted(object sender, EventArgs e) {
if (nodeImpacts != null && nodeImpacts.Count > 0)
PaintNodeImpacts();
}
private void UpdateView() {
if (Content == null || Content.Model == null || Content.ProblemData == null) return;
var tree = Content.Model.SymbolicExpressionTree;
treeChart.Tree = tree.Root.SubtreeCount > 1 ? new SymbolicExpressionTree(tree.Root) : new SymbolicExpressionTree(tree.Root.GetSubtree(0).GetSubtree(0));
var impactAndReplacementValues = CalculateImpactAndReplacementValues(tree);
var replacementValues = impactAndReplacementValues.ToDictionary(x => x.Key, x => x.Value.Item2);
foreach (var pair in replacementValues.Where(pair => !(pair.Key is ConstantTreeNode))) {
foldedNodes[pair.Key] = MakeConstantTreeNode(pair.Value);
}
nodeImpacts = impactAndReplacementValues.ToDictionary(x => x.Key, x => x.Value.Item1);
PaintNodeImpacts();
}
protected abstract Dictionary CalculateReplacementValues(ISymbolicExpressionTree tree);
protected abstract Dictionary CalculateImpactValues(ISymbolicExpressionTree tree);
protected abstract Dictionary> CalculateImpactAndReplacementValues(ISymbolicExpressionTree tree);
protected abstract void UpdateModel(ISymbolicExpressionTree tree);
private static ConstantTreeNode MakeConstantTreeNode(double value) {
var constant = new Constant { MinValue = value - 1, MaxValue = value + 1 };
var constantTreeNode = (ConstantTreeNode)constant.CreateTreeNode();
constantTreeNode.Value = value;
return constantTreeNode;
}
private void treeChart_SymbolicExpressionTreeNodeDoubleClicked(object sender, MouseEventArgs e) {
if (treeState == TreeState.Invalid) return;
var visualNode = (VisualTreeNode)sender;
if (visualNode.Content == null) { throw new Exception("VisualNode content cannot be null."); }
var symbExprTreeNode = (SymbolicExpressionTreeNode)visualNode.Content;
var tree = Content.Model.SymbolicExpressionTree;
var parent = symbExprTreeNode.Parent;
int indexOfSubtree = parent.IndexOfSubtree(symbExprTreeNode);
if (changedNodes.ContainsKey(symbExprTreeNode)) {
// undo node change
parent.RemoveSubtree(indexOfSubtree);
var originalNode = changedNodes[symbExprTreeNode];
parent.InsertSubtree(indexOfSubtree, originalNode);
changedNodes.Remove(symbExprTreeNode);
} else if (foldedNodes.ContainsKey(symbExprTreeNode)) {
// undo node folding
SwitchNodeWithReplacementNode(parent, indexOfSubtree);
}
UpdateModel(tree);
}
private void SwitchNodeWithReplacementNode(ISymbolicExpressionTreeNode parent, int subTreeIndex) {
ISymbolicExpressionTreeNode subTree = parent.GetSubtree(subTreeIndex);
if (foldedNodes.ContainsKey(subTree)) {
parent.RemoveSubtree(subTreeIndex);
var replacementNode = foldedNodes[subTree];
parent.InsertSubtree(subTreeIndex, replacementNode);
// exchange key and value
foldedNodes.Remove(subTree);
foldedNodes.Add(replacementNode, subTree);
}
}
private void PaintNodeImpacts() {
var impacts = nodeImpacts.Values;
double max = impacts.Max();
double min = impacts.Min();
foreach (ISymbolicExpressionTreeNode treeNode in Content.Model.SymbolicExpressionTree.IterateNodesPostfix()) {
VisualTreeNode visualTree = treeChart.GetVisualSymbolicExpressionTreeNode(treeNode);
if (!(treeNode is ConstantTreeNode) && nodeImpacts.ContainsKey(treeNode)) {
visualTree.ToolTip = visualTree.Content.ToString();
double impact = nodeImpacts[treeNode];
// impact = 0 if no change
// impact < 0 if new solution is better
// impact > 0 if new solution is worse
if (impact < 0.0) {
// min is guaranteed to be < 0
visualTree.FillColor = Color.FromArgb((int)(impact / min * 255), Color.Red);
} else if (impact.IsAlmost(0.0)) {
visualTree.FillColor = Color.White;
} else {
// max is guaranteed to be > 0
visualTree.FillColor = Color.FromArgb((int)(impact / max * 255), Color.Green);
}
visualTree.ToolTip += Environment.NewLine + "Node impact: " + impact;
var constantReplacementNode = foldedNodes[treeNode] as ConstantTreeNode;
if (constantReplacementNode != null) {
visualTree.ToolTip += Environment.NewLine + "Replacement value: " + constantReplacementNode.Value;
}
}
if (visualTree != null)
if (changedNodes.ContainsKey(treeNode)) {
visualTree.LineColor = Color.DodgerBlue;
} else if (treeNode is ConstantTreeNode && foldedNodes.ContainsKey(treeNode)) {
visualTree.LineColor = Color.DarkOrange;
}
}
treeChart.RepaintNodes();
}
private void btnSimplify_Click(object sender, EventArgs e) {
var simplifier = new SymbolicDataAnalysisExpressionTreeSimplifier();
var simplifiedExpressionTree = simplifier.Simplify(Content.Model.SymbolicExpressionTree);
UpdateModel(simplifiedExpressionTree);
}
protected abstract void btnOptimizeConstants_Click(object sender, EventArgs e);
}
}