#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.BinaryVectorEncoding; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.Binary { [Item("Binary Knapsack Problem (BKSP)", "Represents a problem whose objective is to maximize the number of true values.")] [Creatable(CreatableAttribute.Categories.CombinatorialProblems, Priority = 999)] [StorableClass] public class BinaryKnapsackProblem : BinaryProblem { public override bool Maximization { get { return true; } } #region Parameter Properties public ValueParameter KnapsackCapacityParameter { get { return (ValueParameter)Parameters["KnapsackCapacity"]; } } public ValueParameter WeightsParameter { get { return (ValueParameter)Parameters["Weights"]; } } public ValueParameter ValuesParameter { get { return (ValueParameter)Parameters["Values"]; } } #endregion #region Properties public IntValue KnapsackCapacity { get { return KnapsackCapacityParameter.Value; } set { KnapsackCapacityParameter.Value = value; } } public IntArray Weights { get { return WeightsParameter.Value; } set { WeightsParameter.Value = value; } } public IntArray Values { get { return ValuesParameter.Value; } set { ValuesParameter.Value = value; } } #endregion [StorableConstructor] protected BinaryKnapsackProblem(bool deserializing) : base(deserializing) { } protected BinaryKnapsackProblem(BinaryKnapsackProblem original, Cloner cloner) : base(original, cloner) { } public BinaryKnapsackProblem() : base() { Encoding.Length = 5; Parameters.Add(new ValueParameter("KnapsackCapacity", "Capacity of the Knapsack.", new IntValue(0))); Parameters.Add(new ValueParameter("Weights", "The weights of the items.", new IntArray(5))); Parameters.Add(new ValueParameter("Values", "The values of the items.", new IntArray(5))); InitializeRandomKnapsackInstance(); } public override IDeepCloneable Clone(Cloner cloner) { return new BinaryKnapsackProblem(this, cloner); } public override double Evaluate(BinaryVector vector, IRandom random) { var itemWeights = Weights; var itemValues = Values; var weight = 0; var value = 0; for (var i = 0; i < vector.Length; i++) { if (!vector[i]) continue; weight += itemWeights[i]; value += itemValues[i]; } var cap = KnapsackCapacity.Value; // assuming only positive values in the knapsack, maximizing in negative // range makes solutions feasible, in positive range increases their value return weight <= cap ? value : cap - weight; } private void InitializeRandomKnapsackInstance() { var rand = new System.Random(); var itemCount = (int)Math.Pow(2, rand.Next(5, 10)); Weights = new IntArray(itemCount); Values = new IntArray(itemCount); double totalWeight = 0; for (var i = 0; i < itemCount; i++) { var value = rand.Next(1, 50); var weight = rand.Next(1, 50); Values[i] = value; Weights[i] = weight; totalWeight += weight; } KnapsackCapacity = new IntValue((int)Math.Round(0.6 * totalWeight)); Encoding.Length = itemCount; } } }