#region License Information
/* HeuristicLab
* Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading;
using HeuristicLab.Algorithms.MemPR.Interfaces;
using HeuristicLab.Algorithms.MemPR.Util;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Encodings.LinearLinkageEncoding;
using HeuristicLab.Optimization;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.PluginInfrastructure;
using HeuristicLab.Random;
namespace HeuristicLab.Algorithms.MemPR.LinearLinkage {
[Item("MemPR (linear linkage)", "MemPR implementation for linear linkage vectors.")]
[StorableClass]
[Creatable(CreatableAttribute.Categories.PopulationBasedAlgorithms, Priority = 999)]
public class LinearLinkageMemPR : MemPRAlgorithm, Encodings.LinearLinkageEncoding.LinearLinkage, LinearLinkageMemPRPopulationContext, LinearLinkageMemPRSolutionContext> {
private const double UncommonBitSubsetMutationProbabilityMagicConst = 0.05;
[StorableConstructor]
protected LinearLinkageMemPR(bool deserializing) : base(deserializing) { }
protected LinearLinkageMemPR(LinearLinkageMemPR original, Cloner cloner) : base(original, cloner) { }
public LinearLinkageMemPR() {
foreach (var trainer in ApplicationManager.Manager.GetInstances>())
SolutionModelTrainerParameter.ValidValues.Add(trainer);
foreach (var localSearch in ApplicationManager.Manager.GetInstances>()) {
LocalSearchParameter.ValidValues.Add(localSearch);
}
}
public override IDeepCloneable Clone(Cloner cloner) {
return new LinearLinkageMemPR(this, cloner);
}
protected override bool Eq(ISingleObjectiveSolutionScope a, ISingleObjectiveSolutionScope b) {
var s1 = a.Solution;
var s2 = b.Solution;
if (s1.Length != s2.Length) return false;
for (var i = 0; i < s1.Length; i++)
if (s1[i] != s2[i]) return false;
return true;
}
protected override double Dist(ISingleObjectiveSolutionScope a, ISingleObjectiveSolutionScope b) {
return 1.0 - HammingSimilarityCalculator.CalculateSimilarity(a.Solution, b.Solution);
}
protected override ISingleObjectiveSolutionScope ToScope(Encodings.LinearLinkageEncoding.LinearLinkage code, double fitness = double.NaN) {
var creator = Problem.SolutionCreator as ILinearLinkageCreator;
if (creator == null) throw new InvalidOperationException("Can only solve linear linkage encoded problems with MemPR (linear linkage)");
return new SingleObjectiveSolutionScope(code, creator.LLEParameter.ActualName, fitness, Problem.Evaluator.QualityParameter.ActualName) {
Parent = Context.Scope
};
}
protected override ISolutionSubspace CalculateSubspace(IEnumerable solutions, bool inverse = false) {
var pop = solutions.ToList();
var N = pop[0].Length;
var subspace = new bool[N];
for (var i = 0; i < N; i++) {
var val = pop[0][i];
if (inverse) subspace[i] = true;
for (var p = 1; p < pop.Count; p++) {
if (pop[p][i] != val) subspace[i] = !inverse;
}
}
return new LinearLinkageSolutionSubspace(subspace);
}
protected override int TabuWalk(
ISingleObjectiveSolutionScope scope,
int maxEvals, CancellationToken token,
ISolutionSubspace sub_space = null) {
var maximization = Context.Problem.Maximization;
var subspace = sub_space is LinearLinkageSolutionSubspace ? ((LinearLinkageSolutionSubspace)sub_space).Subspace : null;
var evaluations = 0;
var quality = scope.Fitness;
if (double.IsNaN(quality)) {
Evaluate(scope, token);
quality = scope.Fitness;
evaluations++;
if (evaluations >= maxEvals) return evaluations;
}
var bestQuality = quality;
var currentScope = (ISingleObjectiveSolutionScope)scope.Clone();
var current = currentScope.Solution;
Encodings.LinearLinkageEncoding.LinearLinkage bestOfTheWalk = null;
var bestOfTheWalkF = double.NaN;
var tabu = new double[current.Length, current.Length];
for (var i = 0; i < current.Length; i++) {
for (var j = i; j < current.Length; j++) {
tabu[i, j] = tabu[j, i] = maximization ? double.MinValue : double.MaxValue;
}
tabu[i, current[i]] = quality;
}
// this dictionary holds the last relevant links
var groupItems = new List();
var lleb = current.ToBackLinks();
Move bestOfTheRest = null;
var bestOfTheRestF = double.NaN;
var lastAppliedMove = -1;
for (var iter = 0; iter < int.MaxValue; iter++) {
// clear the dictionary before a new pass through the array is made
groupItems.Clear();
for (var i = 0; i < current.Length; i++) {
if (subspace != null && !subspace[i]) {
if (lleb[i] != i)
groupItems.Remove(lleb[i]);
groupItems.Add(i);
continue;
}
var next = current[i];
if (lastAppliedMove == i) {
if (bestOfTheRest != null) {
bestOfTheRest.Apply(current);
bestOfTheRest.ApplyToLLEb(lleb);
currentScope.Fitness = bestOfTheRestF;
quality = bestOfTheRestF;
if (maximization) {
tabu[i, next] = Math.Max(tabu[i, next], bestOfTheRestF);
tabu[i, current[i]] = Math.Max(tabu[i, current[i]], bestOfTheRestF);
} else {
tabu[i, next] = Math.Min(tabu[i, next], bestOfTheRestF);
tabu[i, current[i]] = Math.Min(tabu[i, current[i]], bestOfTheRestF);
}
if (FitnessComparer.IsBetter(maximization, bestOfTheRestF, bestOfTheWalkF)) {
bestOfTheWalk = (Encodings.LinearLinkageEncoding.LinearLinkage)current.Clone();
bestOfTheWalkF = bestOfTheRestF;
}
bestOfTheRest = null;
bestOfTheRestF = double.NaN;
lastAppliedMove = i;
} else {
lastAppliedMove = -1;
}
break;
} else {
foreach (var move in MoveGenerator.GenerateForItem(i, groupItems, current, lleb)) {
// we intend to break link i -> next
var qualityToBreak = tabu[i, next];
move.Apply(current);
var qualityToRestore = tabu[i, current[i]]; // current[i] is new next
Evaluate(currentScope, token);
evaluations++;
var moveF = currentScope.Fitness;
var isNotTabu = FitnessComparer.IsBetter(maximization, moveF, qualityToBreak)
&& FitnessComparer.IsBetter(maximization, moveF, qualityToRestore);
var isImprovement = FitnessComparer.IsBetter(maximization, moveF, quality);
var isAspired = FitnessComparer.IsBetter(maximization, moveF, bestQuality);
if ((isNotTabu && isImprovement) || isAspired) {
if (maximization) {
tabu[i, next] = Math.Max(tabu[i, next], moveF);
tabu[i, current[i]] = Math.Max(tabu[i, current[i]], moveF);
} else {
tabu[i, next] = Math.Min(tabu[i, next], moveF);
tabu[i, current[i]] = Math.Min(tabu[i, current[i]], moveF);
}
quality = moveF;
if (isAspired) bestQuality = quality;
move.ApplyToLLEb(lleb);
if (FitnessComparer.IsBetter(maximization, moveF, bestOfTheWalkF)) {
bestOfTheWalk = (Encodings.LinearLinkageEncoding.LinearLinkage)current.Clone();
bestOfTheWalkF = moveF;
}
bestOfTheRest = null;
bestOfTheRestF = double.NaN;
lastAppliedMove = i;
break;
} else {
if (isNotTabu) {
if (FitnessComparer.IsBetter(maximization, moveF, bestOfTheRestF)) {
bestOfTheRest = move;
bestOfTheRestF = moveF;
}
}
move.Undo(current);
currentScope.Fitness = quality;
}
if (evaluations >= maxEvals) break;
}
}
if (lleb[i] != i)
groupItems.Remove(lleb[i]);
groupItems.Add(i);
if (evaluations >= maxEvals) break;
if (token.IsCancellationRequested) break;
}
if (lastAppliedMove == -1) { // no move has been applied
if (bestOfTheRest != null) {
var i = bestOfTheRest.Item;
var next = current[i];
bestOfTheRest.Apply(current);
currentScope.Fitness = bestOfTheRestF;
quality = bestOfTheRestF;
if (maximization) {
tabu[i, next] = Math.Max(tabu[i, next], bestOfTheRestF);
tabu[i, current[i]] = Math.Max(tabu[i, current[i]], bestOfTheRestF);
} else {
tabu[i, next] = Math.Min(tabu[i, next], bestOfTheRestF);
tabu[i, current[i]] = Math.Min(tabu[i, current[i]], bestOfTheRestF);
}
if (FitnessComparer.IsBetter(maximization, bestOfTheRestF, bestOfTheWalkF)) {
bestOfTheWalk = (Encodings.LinearLinkageEncoding.LinearLinkage)current.Clone();
bestOfTheWalkF = bestOfTheRestF;
}
bestOfTheRest = null;
bestOfTheRestF = double.NaN;
} else break;
}
if (evaluations >= maxEvals) break;
if (token.IsCancellationRequested) break;
}
if (bestOfTheWalk != null) {
scope.Solution = bestOfTheWalk;
scope.Fitness = bestOfTheWalkF;
}
return evaluations;
}
protected override ISingleObjectiveSolutionScope Cross(ISingleObjectiveSolutionScope p1Scope, ISingleObjectiveSolutionScope p2Scope, CancellationToken token) {
var p1 = p1Scope.Solution;
var p2 = p2Scope.Solution;
return ToScope(GroupCrossover.Apply(Context.Random, p1, p2));
}
protected override void Mutate(ISingleObjectiveSolutionScope offspring, CancellationToken token, ISolutionSubspace subspace = null) {
var lle = offspring.Solution;
var subset = subspace is LinearLinkageSolutionSubspace ? ((LinearLinkageSolutionSubspace)subspace).Subspace : null;
for (var i = 0; i < lle.Length - 1; i++) {
if (subset == null || subset[i]) continue; // mutation works against crossover so aims to mutate noTouch points
if (Context.Random.NextDouble() < UncommonBitSubsetMutationProbabilityMagicConst) {
subset[i] = true;
var index = Context.Random.Next(i, lle.Length);
for (var j = index - 1; j >= i; j--) {
if (lle[j] == index) index = j;
}
lle[i] = index;
index = i;
var idx2 = i;
for (var j = i - 1; j >= 0; j--) {
if (lle[j] == lle[index]) {
lle[j] = idx2;
index = idx2 = j;
} else if (lle[j] == idx2) idx2 = j;
}
}
}
}
protected override ISingleObjectiveSolutionScope Relink(ISingleObjectiveSolutionScope a, ISingleObjectiveSolutionScope b, CancellationToken token) {
var maximization = Context.Problem.Maximization;
if (double.IsNaN(a.Fitness)) {
Evaluate(a, token);
Context.IncrementEvaluatedSolutions(1);
}
if (double.IsNaN(b.Fitness)) {
Evaluate(b, token);
Context.IncrementEvaluatedSolutions(1);
}
var child = (ISingleObjectiveSolutionScope)a.Clone();
var cgroups = child.Solution.GetGroups().Select(x => new HashSet(x)).ToList();
var g2 = b.Solution.GetGroups().ToList();
var order = Enumerable.Range(0, g2.Count).Shuffle(Context.Random).ToList();
ISingleObjectiveSolutionScope bestChild = null;
for (var j = 0; j < g2.Count; j++) {
var g = g2[order[j]];
var changed = false;
for (var k = j; k < cgroups.Count; k++) {
foreach (var f in g) if (cgroups[k].Remove(f)) changed = true;
if (cgroups[k].Count == 0) {
cgroups.RemoveAt(k);
k--;
}
}
cgroups.Insert(0, new HashSet(g));
child.Solution.SetGroups(cgroups);
if (changed) {
Evaluate(child, token);
if (bestChild == null || FitnessComparer.IsBetter(maximization, child.Fitness, bestChild.Fitness)) {
bestChild = (ISingleObjectiveSolutionScope)child.Clone();
}
}
};
return bestChild;
}
}
}