#region License Information
/* HeuristicLab
* Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Linq;
using System.Threading;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Problems.DataAnalysis;
using HeuristicLab.Problems.DataAnalysis.Symbolic;
using HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis;
namespace HeuristicLab.Algorithms.DataAnalysis.TimeSeries {
[Item("Autoregressive Modeling (AR)", "Timeseries modeling algorithm that creates AR-N models.")]
[Creatable(CreatableAttribute.Categories.DataAnalysis, Priority = 130)]
[StorableClass]
public class AutoregressiveModeling : FixedDataAnalysisAlgorithm {
private const string TimeOffesetParameterName = "Maximum Time Offset";
public IFixedValueParameter TimeOffsetParameter {
get { return (IFixedValueParameter)Parameters[TimeOffesetParameterName]; }
}
public int TimeOffset {
get { return TimeOffsetParameter.Value.Value; }
set { TimeOffsetParameter.Value.Value = value; }
}
[StorableConstructor]
protected AutoregressiveModeling(bool deserializing) : base(deserializing) { }
protected AutoregressiveModeling(AutoregressiveModeling original, Cloner cloner) : base(original, cloner) { }
public override IDeepCloneable Clone(Cloner cloner) {
return new AutoregressiveModeling(this, cloner);
}
public AutoregressiveModeling()
: base() {
Parameters.Add(new FixedValueParameter(TimeOffesetParameterName, "The maximum time offset for the model ranging from 1 to infinity.", new IntValue(1)));
Problem = new TimeSeriesPrognosisProblem();
}
protected override void Run(CancellationToken cancellationToken) {
double rmsError, cvRmsError;
var solution = CreateAutoRegressiveSolution(Problem.ProblemData, TimeOffset, out rmsError, out cvRmsError);
Results.Add(new Result("Autoregressive solution", "The autoregressive time series prognosis solution.", solution));
Results.Add(new Result("Root mean square error", "The root of the mean of squared errors of the autoregressive time series prognosis solution on the training set.", new DoubleValue(rmsError)));
Results.Add(new Result("Estimated root mean square error (cross-validation)", "The estimated root of the mean of squared errors of the autoregressive time series prognosis solution via cross validation.", new DoubleValue(cvRmsError)));
}
///
/// Calculates an AR(p) model. For further information see http://en.wikipedia.org/wiki/Autoregressive_model
///
/// The problem data which should be used for training
/// The parameter p of the AR(p) specifying the maximum time offset [1,infinity]
/// The times series autoregressive solution
public static ITimeSeriesPrognosisSolution CreateAutoRegressiveSolution(ITimeSeriesPrognosisProblemData problemData, int timeOffset) {
double rmsError, cvRmsError;
return CreateAutoRegressiveSolution(problemData, timeOffset, out rmsError, out cvRmsError);
}
private static ITimeSeriesPrognosisSolution CreateAutoRegressiveSolution(ITimeSeriesPrognosisProblemData problemData, int timeOffset, out double rmsError, out double cvRmsError) {
string targetVariable = problemData.TargetVariable;
double[,] inputMatrix = new double[problemData.TrainingPartition.Size, timeOffset + 1];
var targetValues = problemData.Dataset.GetDoubleValues(targetVariable).ToList();
for (int i = 0, row = problemData.TrainingPartition.Start; i < problemData.TrainingPartition.Size; i++, row++) {
for (int col = 0; col < timeOffset; col++) {
inputMatrix[i, col] = targetValues[row - col - 1];
}
}
// set target values in last column
for (int i = 0; i < inputMatrix.GetLength(0); i++)
inputMatrix[i, timeOffset] = targetValues[i + problemData.TrainingPartition.Start];
if (inputMatrix.Cast().Any(x => double.IsNaN(x) || double.IsInfinity(x)))
throw new NotSupportedException("Linear regression does not support NaN or infinity values in the input dataset.");
alglib.linearmodel lm = new alglib.linearmodel();
alglib.lrreport ar = new alglib.lrreport();
int nRows = inputMatrix.GetLength(0);
int nFeatures = inputMatrix.GetLength(1) - 1;
double[] coefficients = new double[nFeatures + 1]; // last coefficient is for the constant
int retVal = 1;
alglib.lrbuild(inputMatrix, nRows, nFeatures, out retVal, out lm, out ar);
if (retVal != 1) throw new ArgumentException("Error in calculation of linear regression solution");
rmsError = ar.rmserror;
cvRmsError = ar.cvrmserror;
alglib.lrunpack(lm, out coefficients, out nFeatures);
var tree = LinearModelToTreeConverter.CreateTree(
variableNames: Enumerable.Repeat(problemData.TargetVariable, nFeatures).ToArray(),
lags: Enumerable.Range(0, timeOffset).Select(i => (i + 1) * -1).ToArray(),
coefficients: coefficients.Take(nFeatures).ToArray(),
@const: coefficients[nFeatures]
);
var interpreter = new SymbolicTimeSeriesPrognosisExpressionTreeInterpreter(problemData.TargetVariable);
var model = new SymbolicTimeSeriesPrognosisModel(problemData.TargetVariable, tree, interpreter);
var solution = model.CreateTimeSeriesPrognosisSolution((ITimeSeriesPrognosisProblemData)problemData.Clone());
return solution;
}
}
}