#region License Information
/* HeuristicLab
* Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Algorithms.DataAnalysis {
[StorableClass]
[Item(Name = "MeanConst", Description = "Constant mean function for Gaussian processes.")]
public sealed class MeanConst : ParameterizedNamedItem, IMeanFunction {
public IValueParameter ValueParameter {
get { return (IValueParameter)Parameters["Value"]; }
}
[StorableConstructor]
private MeanConst(bool deserializing) : base(deserializing) { }
private MeanConst(MeanConst original, Cloner cloner)
: base(original, cloner) {
}
public MeanConst()
: base() {
this.name = ItemName;
this.description = ItemDescription;
Parameters.Add(new OptionalValueParameter("Value", "The constant value for the constant mean function."));
}
public override IDeepCloneable Clone(Cloner cloner) {
return new MeanConst(this, cloner);
}
public int GetNumberOfParameters(int numberOfVariables) {
return ValueParameter.Value != null ? 0 : 1;
}
public void SetParameter(double[] p) {
double c;
GetParameters(p, out c);
ValueParameter.Value = new DoubleValue(c);
}
private void GetParameters(double[] p, out double c) {
if (ValueParameter.Value == null) {
c = p[0];
} else {
if (p.Length > 0)
throw new ArgumentException(
"The length of the parameter vector does not match the number of free parameters for the constant mean function.",
"p");
c = ValueParameter.Value.Value;
}
}
public ParameterizedMeanFunction GetParameterizedMeanFunction(double[] p, int[] columnIndices) {
double c;
GetParameters(p, out c);
var mf = new ParameterizedMeanFunction();
mf.Mean = (x, i) => c;
mf.Gradient = (x, i, k) => {
if (k > 0) throw new ArgumentException();
return 1.0;
};
return mf;
}
}
}