#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Algorithms.DataAnalysis { [StorableClass] [Item(Name = "CovarianceSum", Description = "Sum covariance function for Gaussian processes.")] public sealed class CovarianceSum : Item, ICovarianceFunction { [Storable] private ItemList terms; [Storable] private int numberOfVariables; public ItemList Terms { get { return terms; } } [StorableConstructor] private CovarianceSum(bool deserializing) : base(deserializing) { } private CovarianceSum(CovarianceSum original, Cloner cloner) : base(original, cloner) { this.terms = cloner.Clone(original.terms); this.numberOfVariables = original.numberOfVariables; } public CovarianceSum() : base() { this.terms = new ItemList(); } public override IDeepCloneable Clone(Cloner cloner) { return new CovarianceSum(this, cloner); } public int GetNumberOfParameters(int numberOfVariables) { this.numberOfVariables = numberOfVariables; return terms.Select(t => t.GetNumberOfParameters(numberOfVariables)).Sum(); } public void SetParameter(double[] p) { int offset = 0; foreach (var t in terms) { var numberOfParameters = t.GetNumberOfParameters(numberOfVariables); t.SetParameter(p.Skip(offset).Take(numberOfParameters).ToArray()); offset += numberOfParameters; } } public ParameterizedCovarianceFunction GetParameterizedCovarianceFunction(double[] p, int[] columnIndices) { if (terms.Count == 0) throw new ArgumentException("at least one term is necessary for the product covariance function."); var functions = new List(); foreach (var t in terms) { var numberOfParameters = t.GetNumberOfParameters(numberOfVariables); functions.Add(t.GetParameterizedCovarianceFunction(p.Take(numberOfParameters).ToArray(), columnIndices)); p = p.Skip(numberOfParameters).ToArray(); } var sum = new ParameterizedCovarianceFunction(); sum.Covariance = (x, i, j) => functions.Select(e => e.Covariance(x, i, j)).Sum(); sum.CrossCovariance = (x, xt, i, j) => functions.Select(e => e.CrossCovariance(x, xt, i, j)).Sum(); sum.CovarianceGradient = (x, i, j) => { var g = new List(); foreach (var e in functions) g.AddRange(e.CovarianceGradient(x, i, j)); return g; }; return sum; } } }