#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Encodings.LinearLinkageEncoding {
[Item("LinearLinkage", "Represents an LLE grouping of items.")]
[StorableClass]
public sealed class LinearLinkage : IntArray {
[StorableConstructor]
private LinearLinkage(bool deserializing) : base(deserializing) { }
private LinearLinkage(LinearLinkage original, Cloner cloner) : base(original, cloner) { }
public LinearLinkage() { }
public LinearLinkage(int length) : base(length) { }
public LinearLinkage(int[] elements) : base(elements) { }
public override IDeepCloneable Clone(Cloner cloner) {
return new LinearLinkage(this, cloner);
}
///
/// This method parses the encoded array and calculates the membership of
/// each element to the groups. It starts at the lowest element.
///
///
/// Runtime complexity of this method is O(n) where n is the length of the
/// array.
///
/// An enumeration of all groups.
public IEnumerable> GetGroups() {
var len = array.Length;
var remaining = new HashSet(Enumerable.Range(0, len));
// iterate from lowest to highest index
for (var i = 0; i < len; i++) {
if (!remaining.Contains(i)) continue;
var group = new List { i };
remaining.Remove(i);
var next = array[i];
if (next != i) {
int prev;
do {
group.Add(next);
if (!remaining.Remove(next))
throw new ArgumentException("Array is malformed and does not represent a valid LLE forward encoding.");
prev = next;
next = array[next];
} while (next != prev);
}
yield return group;
}
}
///
/// This method parses the encoded array and gathers all items that
/// belong to the same group as element .
///
/// The element whose group should be returned.
/// The element at and all other
/// elements in the same group.
public IEnumerable GetGroup(int index) {
// return current element
yield return index;
var next = array[index];
if (next == index) yield break;
int prev;
// return succeeding elements in group
do {
yield return next;
prev = next;
next = array[next];
} while (next != prev);
next = array[index];
// return preceding elements in group
for (prev = index - 1; prev >= 0; prev--) {
if (array[prev] != next) continue;
next = prev;
yield return next;
}
}
///
/// This method parses the encoded array and gathers the item itself as
/// well as subsequent items that belong to the same group as element
/// .
///
/// The element from which items in the group should
/// be returned.
/// The element at and all subsequent
/// elements in the same group.
public IEnumerable GetGroupForward(int index) {
yield return index;
var next = array[index];
if (next == index) yield break;
int prev;
do {
yield return next;
prev = next;
next = array[next];
} while (next != prev);
}
///
/// This method translates an enumeration of groups into the underlying
/// array representation.
///
///
/// Throws an ArgumentException when there is an element assigned to
/// multiple groups or elements that are not assigned to any group.
///
/// The grouping of the elements, each element must
/// be part of exactly one group.
public void SetGroups(IEnumerable> grouping) {
var len = array.Length;
var remaining = new HashSet(Enumerable.Range(0, len));
foreach (var group in grouping) {
var prev = -1;
foreach (var g in group.OrderBy(x => x)) {
if (prev >= 0) array[prev] = g;
prev = g;
if (!remaining.Remove(prev))
throw new ArgumentException(string.Format("Element {0} is contained at least twice.", prev), "grouping");
}
if (prev >= 0) array[prev] = prev;
}
if (remaining.Count > 0)
throw new ArgumentException(string.Format("Elements are not assigned a group: {0}", string.Join(", ", remaining)));
}
///
/// Performs a check whether the array represents a valid LLE encoding.
///
///
/// The runtime complexity of this method is O(n) where n is the length of
/// the array.
///
/// True if the encoding is valid.
public bool Validate() {
var len = array.Length;
var remaining = new HashSet(Enumerable.Range(0, len));
for (var i = 0; i < len; i++) {
if (!remaining.Contains(i)) continue;
remaining.Remove(i);
var next = array[i];
if (next == i) continue;
int prev;
do {
if (!remaining.Remove(next)) return false;
prev = next;
next = array[next];
} while (next != prev);
}
return remaining.Count == 0;
}
///
/// This method flattens tree structures that may be present in groups.
/// These tree structures may be created by e.g. merging two groups by
/// linking one end node to the end node of another.
/// Consider following 1-based index array: 6, 6, 7, 5, 5, 8, 8, 8, 9.
/// This results in the following tree structure for group 8:
/// 8
/// / \
/// 6 7
/// / \ |
/// 1 2 3
/// After this operation the array will be 2, 3, 6, 5, 5, 7, 8, 8, 9.
/// Representing a tree with one branch: 1 -> 2 -> 3 -> 6 -> 7 -> 8
///
///
/// The method first converts the array to LLE-e format and then
/// linearizes the links. This requires two passes of the whole array
/// as well as a dictionary to hold the smallest index of each group.
/// The runtime complexity is O(n).
///
/// The method assumes that there are no back links present.
///
public void LinearizeTreeStructures() {
// Step 1: Convert the array into LLE-e
ToLLEeInplace(array);
// Step 2: For all groups linearize the links
FromLLEe(array);
}
///
/// Creates a copy of the underlying array and turns it into LLE-e.
///
///
/// LLE-e is a special format where each element points to the
/// ending item of a group.
/// The LLE representation 2, 3, 5, 6, 5, 7, 8, 8 would become
/// 5, 5, 5, 8, 5, 8, 8, 8 in LLE-e.
///
/// This operation runs in O(n) time.
///
/// An integer array in LLE-e representation
public int[] ToLLEe() {
var result = (int[])array.Clone();
ToLLEeInplace(result);
return result;
}
private void ToLLEeInplace(int[] a) {
var length = a.Length;
for (var i = length - 1; i >= 0; i--) {
if (array[i] == i) a[i] = i;
else a[i] = a[a[i]];
}
}
///
/// Parses an LLE-e representation and modifies the underlying array
/// so that it is in LLE representation.
///
///
/// This operation runs in O(n) time, but requires additional memory
/// in form of a dictionary.
///
/// The LLE-e representation
public void FromLLEe(int[] llee) {
var length = array.Length;
var groups = new Dictionary();
for (var i = length - 1; i >= 0; i--) {
if (llee[i] == i) {
array[i] = i;
groups[i] = i;
} else {
var g = llee[i];
array[i] = groups[g];
groups[g] = i;
}
}
}
}
}