#region License Information
/* HeuristicLab
* Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.CombinedIntegerVectorEncoding;
using HeuristicLab.Encodings.ConditionActionEncoding;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.PluginInfrastructure;
using HeuristicLab.Problems.ConditionActionClassification;
using HeuristicLab.Problems.DataAnalysis;
namespace HeuristicLab.Problems.CombinedIntegerVectorClassification {
[StorableClass]
public class CombinedIntegerVectorClassificationProblem : ConditionActionClassificationProblem, ICombinedIntegerVectorClassificationProblem {
public override string ChildName {
get { return "CombinedIntegerVector"; }
}
#region parameter properties
private IFixedValueParameter> PossibleActionsConcreteClassParameter {
get { return (IFixedValueParameter>)Parameters["PossibleActionsConcreteClass"]; }
}
public override IFixedValueParameter ClassifierComparerParameter {
get { return (IFixedValueParameter)Parameters["ClassifierComparer"]; }
}
#endregion
#region properties
public new CombinedIntegerVectorClassificationProblemData ProblemData {
get { return ProblemDataParameter.Value; }
protected set {
ProblemDataParameter.Value = value;
if (value != null) {
SetProblemDataSettings();
}
}
}
public ItemSet PossibleActionsConcreteClass {
get { return PossibleActionsConcreteClassParameter.Value; }
}
public IClassifierComparer ClassifierComparer {
get { return ClassifierComparerParameter.Value; }
}
#endregion
[StorableConstructor]
protected CombinedIntegerVectorClassificationProblem(bool deserializing) : base(deserializing) { }
protected CombinedIntegerVectorClassificationProblem(CombinedIntegerVectorClassificationProblem original, Cloner cloner)
: base(original, cloner) {
}
public override IDeepCloneable Clone(Cloner cloner) {
return new CombinedIntegerVectorClassificationProblem(this, cloner);
}
public CombinedIntegerVectorClassificationProblem() :
this(new CombinedIntegerVectorClassificationProblemData(new Dataset(ConditionActionClassificationProblemData.defaultVariableNames, ConditionActionClassificationProblemData.defaultData),
ConditionActionClassificationProblemData.defaultVariableNames.Take(ConditionActionClassificationProblemData.defaultVariableNames.Length - 1), ConditionActionClassificationProblemData.defaultVariableNames.Last().ToEnumerable()),
new XCSEvaluator(), new UniformRandomCombinedIntegerVectorCreator(), new CombinedIntegerVectorCoveringCreator()) {
}
public CombinedIntegerVectorClassificationProblem(CombinedIntegerVectorClassificationProblemData problemData, XCSEvaluator evaluator, UniformRandomCombinedIntegerVectorCreator solutionCreator, ICoveringSolutionCreator coveringSolutionCreator)
: base(problemData, evaluator, solutionCreator, coveringSolutionCreator) {
Parameters.Add(new FixedValueParameter("ClassifierComparer", problemData.ConcreteClassifierComparer));
Parameters.Add(new FixedValueParameter>("PossibleActions", new ItemSet(ClassifierComparer)));
Parameters.Add(new FixedValueParameter>("PossibleActionsConcreteClass", new ItemSet(ClassifierComparer)));
SetProblemDataSettings();
InitializeOperators();
}
protected override void SetProblemDataSettings() {
SolutionCreator.ProblemDataParameter.ActualName = ProblemDataParameter.Name;
SetPossibleActions();
}
private void InitializeOperators() {
Operators.AddRange(ApplicationManager.Manager.GetInstances());
Operators.AddRange(AddManipulators());
ParameterizeOperators();
}
private IEnumerable AddManipulators() {
var manipulator = new UniformSomePositionManipulator();
manipulator.ChildParameter.ActualName = ChildName;
manipulator.FetchedInputParameter.ActualName = ClassifierFetcher.CurrentInputToMatchParameter.ActualName;
manipulator.PossibleActionsParameter.ActualName = PossibleActionsConcreteClassParameter.Name;
return new List() { manipulator };
}
protected override void SetPossibleActions() {
//get bounds of action
IntMatrix actionBounds = GetElementsOfBoundsForAction(ProblemData.Bounds, ProblemData.Length.Value, ProblemData.ActionLength.Value);
int actionLength = ProblemData.ActionLength.Value;
int start = ProblemData.Length.Value - actionLength;
int[] elements = new int[actionLength];
int[] curPos = new int[actionLength];
bool done = false;
//initialize curPos
for (int i = 0; i < actionBounds.Rows; i++) {
curPos[i] = actionBounds[i, 0];
}
PossibleActions.Clear();
PossibleActionsConcreteClass.Clear();
while (!done) {
PossibleActions.Add(new CombinedIntegerVector(curPos, actionLength, actionBounds));
PossibleActionsConcreteClass.Add(new CombinedIntegerVector(curPos, actionLength, actionBounds));
curPos = GetNextAction(curPos, actionBounds, out done);
}
ThetaMinimalNumberOfActions.Value = PossibleActions.Count;
}
private int[] GetNextAction(int[] curPos, IntMatrix actionBounds, out bool done) {
int cur = 0;
while (cur < curPos.Length) {
curPos[cur] += actionBounds.Columns < 3 ? 1 : actionBounds[cur, 2];
if (curPos[cur] >= actionBounds[cur, 1]) {
curPos[cur] = actionBounds[cur, 0];
cur++;
} else {
break;
}
}
done = cur >= curPos.Length;
return curPos;
}
private IntMatrix GetElementsOfBoundsForAction(IntMatrix bounds, int length, int actionPartLength) {
IntMatrix actionBounds = new IntMatrix(actionPartLength, bounds.Columns);
int start = length - actionPartLength;
for (int i = start; i < length; i++) {
int pos = i % bounds.Rows;
for (int j = 0; j < bounds.Columns; j++) {
actionBounds[i - start, j] = bounds[pos, j];
}
}
return actionBounds;
}
}
}