#region License Information
/* HeuristicLab
* Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Optimization.Operators.LCS;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Encodings.DecisionList {
[StorableClass]
[Item("Rule", "")]
public class Rule : Item {
[Storable]
private IDictionary variables;
public IDictionary Variables {
get { return variables; }
}
[Storable]
private IAction action;
public IAction Action { get { return action; } }
public double Length {
get { return variables.Values.Sum(x => x.Length); }
}
[StorableConstructor]
protected Rule(bool deserializing) : base(deserializing) { }
protected Rule(Rule original, Cloner cloner)
: base(original, cloner) {
variables = new Dictionary(original.variables.Count);
foreach (var item in original.variables) {
variables.Add(item.Key, cloner.Clone(item.Value));
}
action = (IAction)original.action.Clone();
}
public Rule()
: base() {
variables = new Dictionary();
}
public Rule(IEnumerable condition, IAction action)
: this() {
foreach (var variable in condition) {
variables.Add(variable.VariableName, variable);
}
this.action = action;
}
public override IDeepCloneable Clone(Cloner cloner) {
return new Rule(this, cloner);
}
public override string ToString() {
StringBuilder sb = new StringBuilder();
foreach (var variable in Variables) {
sb.Append(variable.Value + "|");
}
sb.Append("|" + Action);
return sb.ToString();
}
public void Randomize(IRandom random, double oneProbability, IEnumerable discretizers, IEnumerable exceptActions = null) {
foreach (var variable in variables.Values) {
variable.Randomize(random, oneProbability, discretizers);
}
if (exceptActions == null) {
action.Randomize(random);
} else {
action.Randomize(random, exceptActions);
}
}
public void SetToMatchInput(IGAssistInput input) {
foreach (var variable in variables) {
if (!input.VariableNames.Contains(variable.Key)) {
throw new ArgumentException("input does not contain variable name of rule");
}
variable.Value.SetToMatch(input.GetVariableValue(variable.Key));
}
}
public double ComputeTheoryLength() {
return variables.Sum(x => x.Value.ComputeTheoryLength());
}
public bool MatchInput(IGAssistInput target) {
foreach (var variable in variables) {
if (!target.VariableNames.Contains(variable.Key)) { throw new ArgumentException("Input doesn't contain variable"); }
if (!variable.Value.Match(target.GetVariableValue(variable.Key))) { return false; }
}
return true;
}
public Rule Crossover(Rule rule, IRandom random) {
//variables and rule.Variables have to be the same
int cutpoint = random.Next(0, Variables.Count);
var crossedVariables = new List(variables.Count);
var variableNames = variables.Keys.ToList();
for (int i = 0; i < cutpoint; i++) {
crossedVariables.Add(this.Variables[variableNames[i]]);
}
for (int i = cutpoint; i < variables.Count; i++) {
crossedVariables.Add(rule.Variables[variableNames[i]]);
}
IAction action = random.Next(0, 2) == 0 ? this.action : rule.action;
return new Rule(crossedVariables, action);
}
public void ApplySplit(IRandom random, double probability) {
foreach (var variable in variables.Values) {
if (random.NextDouble() < probability)
variable.Split(random);
}
}
public void ApplyMerge(IRandom random, double probability) {
foreach (var variable in variables.Values) {
if (random.NextDouble() < probability)
variable.Merge(random);
}
}
public void ApplyReinitialize(IRandom random, double probability, double oneProbability, IEnumerable discretizers) {
foreach (var variable in variables.Values) {
if (random.NextDouble() < probability)
variable.Reinitialize(random, oneProbability, discretizers);
}
}
}
}