#region License Information
/* HeuristicLab
* Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Optimization.Operators.LCS;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Encodings.DecisionList {
[StorableClass]
[Item("DecisionList", "")]
public class DecisionList : Item, IGAssistIndividual {
[Storable]
private IList rules;
public IList Rules {
get { return rules; }
}
[Storable]
private IAction defaultAction;
public IAction DefaultAction {
get { return defaultAction; }
}
public double Length {
get { return 1 + rules.Sum(r => r.Length); }
}
// default rule (action) is part of the rule set size
public int RuleSetSize {
get { return defaultAction == null ? rules.Count : rules.Count + 1; }
}
[StorableConstructor]
protected DecisionList(bool deserializing) : base(deserializing) { }
protected DecisionList(DecisionList original, Cloner cloner)
: base(original, cloner) {
defaultAction = cloner.Clone(original.DefaultAction);
rules = new List(original.rules.Count);
foreach (var rule in original.Rules) {
rules.Add(cloner.Clone(rule));
}
}
public DecisionList()
: base() {
rules = new List();
defaultAction = null;
}
public DecisionList(List rules)
: base() {
this.rules = rules;
this.defaultAction = null;
}
public DecisionList(List rules, IAction defaultAction)
: base() {
if (rules.Any(x => x.Action.Match(defaultAction))) { throw new ArgumentException("If a default action is used. The default action is not allowed be used in any rule."); }
this.rules = rules;
this.defaultAction = defaultAction;
}
public override IDeepCloneable Clone(Cloner cloner) {
return new DecisionList(this, cloner);
}
// for convenience
public IEnumerable Evaluate(IEnumerable input) {
ItemSet aliveRules;
return Evaluate(input, out aliveRules);
}
// for convenience
public IEnumerable Evaluate(IEnumerable input, out ItemSet aliveRules) {
double theoryLengtgh;
return Evaluate(input, out aliveRules, out theoryLengtgh);
}
public IEnumerable Evaluate(IEnumerable input, out ItemSet aliveRules, out double theoryLength) {
var estimated = new List();
var activatedRules = new ItemSet();
int count = 0;
foreach (var dli in input) {
count++;
foreach (var rule in rules) {
if (rule.MatchInput(dli)) {
estimated.Add(rule.Action);
activatedRules.Add(rule);
break;
}
}
if (count > estimated.Count) {
estimated.Add(defaultAction);
}
}
aliveRules = activatedRules;
theoryLength = activatedRules.Sum(x => x.ComputeTheoryLength());
return estimated;
}
public void RemoveRules(IEnumerable deadRules) {
foreach (var deadRule in deadRules) {
Rules.Remove(deadRule);
}
}
#region IGAssistIndividual Members
public IGAssistNiche Niche {
get { return defaultAction; }
}
public void ApplySplit(IRandom random, double probability) {
foreach (var rule in rules) {
rule.ApplySplit(random, probability);
}
}
public void ApplyMerge(IRandom random, double probability) {
foreach (var rule in rules) {
rule.ApplyMerge(random, probability);
}
}
public void ApplyReinitialize(IRandom random, double probability, double oneProbability, IEnumerable discretizers) {
foreach (var rule in rules) {
rule.ApplyReinitialize(random, probability, oneProbability, discretizers);
}
}
public IGAssistSolution CreateGAssistSolution(IGAssistProblemData problemData) {
return new DecisionListSolution(this, problemData);
}
#endregion
#region IGAssistModel Members
IEnumerable IGAssistModel.Evaluate(IEnumerable input) {
return Evaluate(input);
}
public IEnumerable Evaluate(IEnumerable input, out ItemSet aliveRules, out double theoryLength) {
return Evaluate(input, out aliveRules, out theoryLength);
}
#endregion
}
}