#region License Information /* HeuristicLab * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Collections.Generic; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Operators; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Encodings.ConditionActionEncoding { [Item("PredictionArrayCalculator", "")] [StorableClass] public class PredictionArrayCalculator : SingleSuccessorOperator { public ILookupParameter ClassifierComparerParameter { get { return (ILookupParameter)Parameters["ClassifierComparer"]; } } public ILookupParameter> FitnessParameter { get { return (ILookupParameter>)Parameters["Fitness"]; } } public ILookupParameter> PredictionParameter { get { return (ILookupParameter>)Parameters["Prediction"]; } } public IValueParameter> PredictionArrayParameter { get { return (IValueParameter>)Parameters["PredictionArray"]; } } public ILookupParameter> MatchParameter { get { return (ILookupParameter>)Parameters["MatchParameter"]; } } [StorableConstructor] protected PredictionArrayCalculator(bool deserializing) : base(deserializing) { } protected PredictionArrayCalculator(PredictionArrayCalculator original, Cloner cloner) : base(original, cloner) { } public PredictionArrayCalculator() : base() { Parameters.Add(new LookupParameter("ClassifierComparer")); Parameters.Add(new ScopeTreeLookupParameter("Fitness")); Parameters.Add(new ScopeTreeLookupParameter("Prediction")); Parameters.Add(new ValueLookupParameter>("PredictionArray")); Parameters.Add(new ScopeParameter("CurrentScope", "The current scope from which sub-scopes should be selected.")); Parameters.Add(new ScopeTreeLookupParameter("MatchParameter", "The matching encoding contained in each sub-scope which is used for selection.")); } public override IDeepCloneable Clone(Cloner cloner) { return new PredictionArrayCalculator(this, cloner); } public sealed override IOperation Apply() { IItemDictionary predictionArray = new ItemDictionary(ClassifierComparerParameter.ActualValue); IDictionary fitnessSumPerAction = new Dictionary(ClassifierComparerParameter.ActualValue); ItemArray fitnesses = FitnessParameter.ActualValue; ItemArray predictions = PredictionParameter.ActualValue; for (int i = 0; i < MatchParameter.ActualValue.Length; i++) { var action = MatchParameter.ActualValue[i].Action; if (predictionArray.ContainsKey(action)) { predictionArray[action].Value += predictions[i].Value * fitnesses[i].Value; fitnessSumPerAction[action] += fitnesses[i].Value; } else { predictionArray[action] = new DoubleValue(predictions[i].Value * fitnesses[i].Value); fitnessSumPerAction[action] = fitnesses[i].Value; } } foreach (var action in predictionArray.Keys) { if (fitnessSumPerAction[action] != 0) { predictionArray[action].Value /= fitnessSumPerAction[action]; } } PredictionArrayParameter.ActualValue = predictionArray; return base.Apply(); } } }