#region License Information
/* HeuristicLab
* Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Operators;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Encodings.ConditionActionEncoding {
[Item("ConditionActionSolutionAnalyzer", "")]
[StorableClass]
public abstract class XCSSolutionAnalyzer : SingleSuccessorOperator, IAnalyzer {
public bool EnabledByDefault {
get { return true; }
}
public ScopeTreeLookupParameter ClassifierParameter {
get { return (ScopeTreeLookupParameter)Parameters["Classifier"]; }
}
public ScopeTreeLookupParameter PredictionParameter {
get { return (ScopeTreeLookupParameter)Parameters["Prediction"]; }
}
public ScopeTreeLookupParameter ErrorParameter {
get { return (ScopeTreeLookupParameter)Parameters["Error"]; }
}
public ScopeTreeLookupParameter FitnessParameter {
get { return (ScopeTreeLookupParameter)Parameters["Fitness"]; }
}
public ScopeTreeLookupParameter ExperienceParameter {
get { return (ScopeTreeLookupParameter)Parameters["Experience"]; }
}
public ScopeTreeLookupParameter TimestampParameter {
get { return (ScopeTreeLookupParameter)Parameters["Timestamp"]; }
}
public ScopeTreeLookupParameter AverageActionSetSizeParameter {
get { return (ScopeTreeLookupParameter)Parameters["AverageActionSetSize"]; }
}
public ScopeTreeLookupParameter NumerosityParameter {
get { return (ScopeTreeLookupParameter)Parameters["Numerosity"]; }
}
public LookupParameter ProblemDataParameter {
get { return (LookupParameter)Parameters["ProblemData"]; }
}
public ValueLookupParameter ResultsParameter {
get { return (ValueLookupParameter)Parameters["Results"]; }
}
public ILookupParameter ClassifierComparerParameter {
get { return (ILookupParameter)Parameters["ClassifierComparer"]; }
}
public ResultCollection Results { get { return ResultsParameter.ActualValue; } }
[StorableConstructor]
protected XCSSolutionAnalyzer(bool deserializing) : base(deserializing) { }
protected XCSSolutionAnalyzer(XCSSolutionAnalyzer original, Cloner cloner) : base(original, cloner) { }
public XCSSolutionAnalyzer()
: base() {
Parameters.Add(new ScopeTreeLookupParameter("Classifier", ""));
Parameters.Add(new ScopeTreeLookupParameter("Prediction", ""));
Parameters.Add(new ScopeTreeLookupParameter("Error", ""));
Parameters.Add(new ScopeTreeLookupParameter("Fitness", ""));
Parameters.Add(new ScopeTreeLookupParameter("Experience", ""));
Parameters.Add(new ScopeTreeLookupParameter("Timestamp", ""));
Parameters.Add(new ScopeTreeLookupParameter("AverageActionSetSize", ""));
Parameters.Add(new ScopeTreeLookupParameter("Numerosity", ""));
Parameters.Add(new LookupParameter("ProblemData", ""));
Parameters.Add(new ValueLookupParameter("Results", "The result collection where the solution should be stored."));
Parameters.Add(new LookupParameter("ClassifierComparer"));
}
public override IOperation Apply() {
ItemArray classifiers = ClassifierParameter.ActualValue;
ItemArray predictions = PredictionParameter.ActualValue;
ItemArray errors = ErrorParameter.ActualValue;
ItemArray fitnesses = FitnessParameter.ActualValue;
ItemArray experiences = ExperienceParameter.ActualValue;
ItemArray timestamps = TimestampParameter.ActualValue;
ItemArray averageActionSetSizes = AverageActionSetSizeParameter.ActualValue;
ItemArray numerosities = NumerosityParameter.ActualValue;
IConditionActionProblemData problemData = ProblemDataParameter.ActualValue;
ItemCollection xcsClassifiers = new ItemCollection();
for (int i = 0; i < classifiers.Length; i++) {
xcsClassifiers.Add(new XCSClassifier(classifiers[i], predictions[i], errors[i],
fitnesses[i], experiences[i], timestamps[i], averageActionSetSizes[i], numerosities[i]));
}
XCSModel xcsModel = new XCSModel(xcsClassifiers);
xcsModel.ClassifierComparer = ClassifierComparerParameter.ActualValue;
UseCurrentXCSSolution(xcsModel.CreateConditionActionSolution(problemData));
return base.Apply();
}
protected abstract void UseCurrentXCSSolution(IXCSSolution xcsSolution);
}
}