#region License Information
/* HeuristicLab
* Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.ConditionActionEncoding;
using HeuristicLab.Operators;
using HeuristicLab.Optimization.Operators;
using HeuristicLab.Optimization.Operators.LCS;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Selection;
namespace HeuristicLab.Algorithms.LearningClassifierSystems {
///
/// An operator which represents the main loop of a genetic algorithm.
///
[Item("LCSAdaptedGeneticAlgorithm", "An operator which represents the main loop of a genetic algorithm, which has been adapdet for learning classifier systems.")]
[StorableClass]
public sealed class LCSAdaptedGeneticAlgorithm : AlgorithmOperator {
private const string TEMPID = "TempID";
private const string SUBSUMEDBY = "SubsumedBy";
private const string SUBSUMED = "Subsumed";
#region Parameter properties
public ValueLookupParameter RandomParameter {
get { return (ValueLookupParameter)Parameters["Random"]; }
}
public ValueLookupParameter MaximizationParameter {
get { return (ValueLookupParameter)Parameters["Maximization"]; }
}
public ScopeTreeLookupParameter QualityParameter {
get { return (ScopeTreeLookupParameter)Parameters["Quality"]; }
}
public ValueLookupParameter SelectorParameter {
get { return (ValueLookupParameter)Parameters["Selector"]; }
}
public ValueLookupParameter AfterCopyingParentsParameter {
get { return (ValueLookupParameter)Parameters["AfterCopyingParents"]; }
}
public ValueLookupParameter CrossoverParameter {
get { return (ValueLookupParameter)Parameters["Crossover"]; }
}
public ValueLookupParameter AfterCrossoverParameter {
get { return (ValueLookupParameter)Parameters["AfterCrossover"]; }
}
public ValueLookupParameter MutationProbabilityParameter {
get { return (ValueLookupParameter)Parameters["MutationProbability"]; }
}
public ValueLookupParameter CrossoverProbabilityParameter {
get { return (ValueLookupParameter)Parameters["CrossoverProbability"]; }
}
public ValueLookupParameter MutatorParameter {
get { return (ValueLookupParameter)Parameters["Mutator"]; }
}
public ValueLookupParameter MaximumGenerationsParameter {
get { return (ValueLookupParameter)Parameters["MaximumGenerations"]; }
}
public ValueLookupParameter ResultsParameter {
get { return (ValueLookupParameter)Parameters["Results"]; }
}
public ValueLookupParameter EvaluatedSolutionsParameter {
get { return (ValueLookupParameter)Parameters["EvaluatedSolutions"]; }
}
public ValueLookupParameter PopulationSizeParameter {
get { return (ValueLookupParameter)Parameters["PopulationSize"]; }
}
public ValueLookupParameter DoGASubsumptionParameter {
get { return (ValueLookupParameter)Parameters["DoGASubsumption"]; }
}
private ScopeParameter CurrentScopeParameter {
get { return (ScopeParameter)Parameters["CurrentScope"]; }
}
public IScope CurrentScope {
get { return CurrentScopeParameter.ActualValue; }
}
#endregion
private CheckGASubsumptionOperator checkGASubsumptionOperator;
[StorableConstructor]
private LCSAdaptedGeneticAlgorithm(bool deserializing) : base(deserializing) { }
private LCSAdaptedGeneticAlgorithm(LCSAdaptedGeneticAlgorithm original, Cloner cloner)
: base(original, cloner) {
}
public override IDeepCloneable Clone(Cloner cloner) {
return new LCSAdaptedGeneticAlgorithm(this, cloner);
}
public LCSAdaptedGeneticAlgorithm()
: base() {
Initialize();
}
private void Initialize() {
#region Create parameters
Parameters.Add(new ValueLookupParameter("Random", "A pseudo random number generator."));
Parameters.Add(new ValueLookupParameter("Maximization", "True if the problem is a maximization problem, otherwise false."));
Parameters.Add(new ScopeTreeLookupParameter("Quality", "The value which represents the quality of a solution."));
Parameters.Add(new ValueLookupParameter("Selector", "The operator used to select solutions for reproduction."));
Parameters.Add(new ValueLookupParameter("AfterCopyingParents", "The operator executed after copying a parent instead of using crossover."));
Parameters.Add(new ValueLookupParameter("Crossover", "The operator used to cross solutions."));
Parameters.Add(new ValueLookupParameter("AfterCrossover", "The operator executed after crossing the solutions."));
Parameters.Add(new ValueLookupParameter("CrossoverProbability", "The probability that the crossover operator is applied on a solution."));
Parameters.Add(new ValueLookupParameter("MutationProbability", "The probability that druing the mutation operator a mutation takes place."));
Parameters.Add(new ValueLookupParameter("Mutator", "The operator used to mutate solutions."));
Parameters.Add(new ValueLookupParameter("MaximumGenerations", "The maximum number of generations which should be processed."));
Parameters.Add(new ValueLookupParameter("Results", "The variable collection where results should be stored."));
Parameters.Add(new ValueLookupParameter("EvaluatedSolutions", "The number of times solutions have been evaluated."));
Parameters.Add(new ValueLookupParameter("PopulationSize", "The size of the population."));
Parameters.Add(new ValueLookupParameter("DoGASubsumption", "Sets if GA subsumption is executed."));
Parameters.Add(new ScopeParameter("CurrentScope", "The current scope which represents a population of solutions on which the genetic algorithm should be applied."));
#endregion
#region Create operators
VariableCreator variableCreator = new VariableCreator();
ResultsCollector resultsCollector1 = new ResultsCollector();
Placeholder selector = new Placeholder();
SubScopesProcessor subScopesProcessor1 = new SubScopesProcessor();
ChildrenCreator childrenCreator = new ChildrenCreator();
UniformSubScopesProcessor uniformSubScopesProcessor1 = new UniformSubScopesProcessor();
StochasticBranch crossoverStochasticBranch = new StochasticBranch();
RandomSelector randomSelector = new RandomSelector();
PreservingRightReducer preservingRightReducer = new PreservingRightReducer();
Placeholder afterCopyingParents = new Placeholder();
Placeholder crossover = new Placeholder();
Placeholder afterCrossover = new Placeholder();
Placeholder mutator = new Placeholder();
SubScopesRemover subScopesRemover = new SubScopesRemover();
SubScopesCounter subScopesCounter = new SubScopesCounter();
MergingReducer mergingReducer = new MergingReducer();
IntCounter intCounter = new IntCounter();
Comparator comparator = new Comparator();
ConditionalBranch conditionalBranch = new ConditionalBranch();
TempSubScopeIDAssigner tempIdAssigner = new TempSubScopeIDAssigner();
ConditionalBranch doGASubsumptionBranch1 = new ConditionalBranch();
UniformSubScopesProcessor setSubsumptionFalseSubScopesProcessor = new UniformSubScopesProcessor();
Assigner setSubsumpByAssigner = new Assigner();
Assigner setSubsumptionFalseAssigner = new Assigner();
checkGASubsumptionOperator = new CheckGASubsumptionOperator();
ConditionalBranch doGASubsumptionBranch2 = new ConditionalBranch();
ExecuteGASubsumptionOperator executeGAsubsumptionOperator = new ExecuteGASubsumptionOperator();
ConditionalSelector subsumptionSelector = new ConditionalSelector();
LeftReducer subsumptionLeftReducer = new LeftReducer();
variableCreator.CollectedValues.Add(new ValueParameter("Generations", new IntValue(0))); // Class GeneticAlgorithm expects this to be called Generations
//resultsCollector1.CollectedValues.Add(new LookupParameter("Iterations"));
resultsCollector1.ResultsParameter.ActualName = "Results";
tempIdAssigner.LeftSideParameter.ActualName = TEMPID;
setSubsumpByAssigner.LeftSideParameter.ActualName = SUBSUMEDBY;
setSubsumpByAssigner.RightSideParameter.Value = new IntValue(-1);
setSubsumptionFalseAssigner.LeftSideParameter.ActualName = SUBSUMED;
setSubsumptionFalseAssigner.RightSideParameter.Value = new BoolValue(false);
selector.Name = "Selector";
selector.OperatorParameter.ActualName = "Selector";
childrenCreator.ParentsPerChild = new IntValue(2);
crossoverStochasticBranch.ProbabilityParameter.ActualName = CrossoverProbabilityParameter.ActualName;
crossoverStochasticBranch.RandomParameter.ActualName = "Random";
randomSelector.CopySelected.Value = true;
randomSelector.NumberOfSelectedSubScopesParameter.Value = new IntValue(1);
afterCopyingParents.Name = "AfterCopyingParents";
afterCopyingParents.OperatorParameter.ActualName = "AfterCopyingParents";
crossover.Name = "Crossover";
crossover.OperatorParameter.ActualName = "Crossover";
afterCrossover.Name = "AfterCrossover";
afterCrossover.OperatorParameter.ActualName = "AfterCrossover";
mutator.Name = "Mutator";
mutator.OperatorParameter.ActualName = "Mutator";
doGASubsumptionBranch1.ConditionParameter.ActualName = DoGASubsumptionParameter.ActualName;
checkGASubsumptionOperator.NumerositiesParameter.ActualName = "Numerosity";
checkGASubsumptionOperator.ExperiencesParameter.ActualName = "Experience";
checkGASubsumptionOperator.ErrorsParameter.ActualName = "Error";
checkGASubsumptionOperator.TempIDParameter.ActualName = TEMPID;
checkGASubsumptionOperator.ErrorZeroParameter.ActualName = "ErrorZero";
checkGASubsumptionOperator.ThetaSubsumptionParameter.ActualName = "ThetaSubsumption";
checkGASubsumptionOperator.SubsumedByParameter.ActualName = SUBSUMEDBY;
checkGASubsumptionOperator.SubsumedParameter.ActualName = SUBSUMED;
subScopesRemover.RemoveAllSubScopes = true;
doGASubsumptionBranch2.ConditionParameter.ActualName = DoGASubsumptionParameter.ActualName;
executeGAsubsumptionOperator.NumerositiesParameter.ActualName = "Numerosity";
executeGAsubsumptionOperator.TempIDParameter.ActualName = TEMPID;
executeGAsubsumptionOperator.SubsumedByParameter.ActualName = SUBSUMEDBY;
subsumptionSelector.ConditionParameter.ActualName = SUBSUMED;
subsumptionSelector.CopySelected = new BoolValue(false);
subScopesCounter.Name = "Increment EvaluatedSolutions";
subScopesCounter.ValueParameter.ActualName = EvaluatedSolutionsParameter.Name;
intCounter.Increment = new IntValue(1);
intCounter.ValueParameter.ActualName = "Generations";
comparator.Comparison = new Comparison(ComparisonType.GreaterOrEqual);
comparator.LeftSideParameter.ActualName = "Generations";
comparator.ResultParameter.ActualName = "Terminate";
comparator.RightSideParameter.ActualName = "MaximumGenerations";
conditionalBranch.ConditionParameter.ActualName = "Terminate";
#endregion
#region Create operator graph
OperatorGraph.InitialOperator = variableCreator;
variableCreator.Successor = resultsCollector1;
resultsCollector1.Successor = tempIdAssigner;
tempIdAssigner.Successor = setSubsumptionFalseSubScopesProcessor;
setSubsumptionFalseSubScopesProcessor.Operator = setSubsumpByAssigner;
setSubsumpByAssigner.Successor = setSubsumptionFalseAssigner;
setSubsumptionFalseAssigner.Successor = null;
setSubsumptionFalseSubScopesProcessor.Successor = selector;
selector.Successor = subScopesProcessor1;
subScopesProcessor1.Operators.Add(new EmptyOperator());
subScopesProcessor1.Operators.Add(childrenCreator);
subScopesProcessor1.Successor = mergingReducer;
childrenCreator.Successor = uniformSubScopesProcessor1;
uniformSubScopesProcessor1.Operator = crossoverStochasticBranch;
uniformSubScopesProcessor1.Successor = subScopesCounter;
crossoverStochasticBranch.FirstBranch = crossover;
crossoverStochasticBranch.SecondBranch = randomSelector;
randomSelector.Successor = preservingRightReducer;
preservingRightReducer.Successor = afterCopyingParents;
crossoverStochasticBranch.Successor = mutator;
crossover.Successor = afterCrossover;
mutator.Successor = doGASubsumptionBranch1;
doGASubsumptionBranch1.TrueBranch = checkGASubsumptionOperator;
doGASubsumptionBranch1.FalseBranch = new EmptyOperator();
doGASubsumptionBranch1.Successor = subScopesRemover;
subScopesRemover.Successor = null;
subScopesCounter.Successor = null;
mergingReducer.Successor = doGASubsumptionBranch2;
doGASubsumptionBranch2.TrueBranch = executeGAsubsumptionOperator;
doGASubsumptionBranch2.FalseBranch = new EmptyOperator();
executeGAsubsumptionOperator.Successor = subsumptionSelector;
subsumptionSelector.Successor = subsumptionLeftReducer;
subsumptionLeftReducer.Successor = null;
doGASubsumptionBranch2.Successor = intCounter;
intCounter.Successor = comparator;
comparator.Successor = conditionalBranch;
conditionalBranch.FalseBranch = selector;
conditionalBranch.TrueBranch = null;
conditionalBranch.Successor = null;
#endregion
}
public override IOperation Apply() {
if (CrossoverParameter.ActualValue == null)
return null;
return base.Apply();
}
public void SetChildName(string childName) {
checkGASubsumptionOperator.ChildClassifiersParameter.ActualName = childName;
checkGASubsumptionOperator.ParentsClassifiersParameter.ActualName = childName;
}
}
}