#region License Information
/* HeuristicLab
* Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Linq;
using HeuristicLab.Analysis;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Operators;
using HeuristicLab.Optimization;
using HeuristicLab.Optimization.Operators;
using HeuristicLab.Optimization.Operators.LCS;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.PluginInfrastructure;
using HeuristicLab.Random;
namespace HeuristicLab.Algorithms.GAssist {
///
/// A genetic algorithm.
///
[Item("GAssist", "A learning classifier system.")]
[Creatable("Algorithms")]
[StorableClass]
public sealed class GAssist : HeuristicOptimizationEngineAlgorithm, IStorableContent {
public string Filename { get; set; }
#region Problem Properties
public override Type ProblemType {
get { return typeof(IGAssistProblem); }
}
public new IGAssistProblem Problem {
get { return (IGAssistProblem)base.Problem; }
set { base.Problem = value; }
}
#endregion
#region Parameter Properties
private ValueParameter SeedParameter {
get { return (ValueParameter)Parameters["Seed"]; }
}
private ValueParameter SetSeedRandomlyParameter {
get { return (ValueParameter)Parameters["SetSeedRandomly"]; }
}
private ValueParameter PopulationSizeParameter {
get { return (ValueParameter)Parameters["PopulationSize"]; }
}
public ValueParameter MDLIterationOperatorParameter {
get { return (ValueParameter)Parameters["MDLIterationOperator"]; }
}
public IConstrainedValueParameter DefaultRuleParameter {
get { return (IConstrainedValueParameter)Parameters["DefaultRule"]; }
}
public IConstrainedValueParameter SelectorParameter {
get { return (IConstrainedValueParameter)Parameters["Selector"]; }
}
private ValueParameter CrossoverProbabilityParameter {
get { return (ValueParameter)Parameters["CrossoverProbability"]; }
}
public IConstrainedValueParameter CrossoverParameter {
get { return (IConstrainedValueParameter)Parameters["Crossover"]; }
}
private ValueParameter MutationProbabilityParameter {
get { return (ValueParameter)Parameters["MutationProbability"]; }
}
public IConstrainedValueParameter MutatorParameter {
get { return (IConstrainedValueParameter)Parameters["Mutator"]; }
}
private ValueParameter ElitesParameter {
get { return (ValueParameter)Parameters["Elites"]; }
}
private ValueParameter AnalyzerParameter {
get { return (ValueParameter)Parameters["Analyzer"]; }
}
private ValueParameter SpecialStagesParameter {
get { return (ValueParameter)Parameters["SpecialStages"]; }
}
private ValueParameter MaximumGenerationsParameter {
get { return (ValueParameter)Parameters["MaximumGenerations"]; }
}
private ValueParameter StartReinitializeProbabilityParameter {
get { return (ValueParameter)Parameters["StartReinitializeProbability"]; }
}
private ValueParameter EndReinitializeProbabilityParameter {
get { return (ValueParameter)Parameters["EndReinitializeProbability"]; }
}
public IConstrainedValueParameter ReinitializeCurveOperatorParameter {
get { return (IConstrainedValueParameter)Parameters["ReinitializeCurveOperator"]; }
}
private ValueParameter SplitProbabilityParameter {
get { return (ValueParameter)Parameters["SplitProbability"]; }
}
private ValueParameter MergeProbabilityParameter {
get { return (ValueParameter)Parameters["MergeProbability"]; }
}
private ValueParameter OneProbabilityParameter {
get { return (ValueParameter)Parameters["OneProbability"]; }
}
private ValueParameter MaximumNumberOfIntervalsParameter {
get { return (ValueParameter)Parameters["MaximumNumberOfIntervals"]; }
}
private ValueParameter InitialNumberOfRulesParameter {
get { return (ValueParameter)Parameters["InitialNumberOfRules"]; }
}
private ValueParameter> DiscretizersParameter {
get { return (ValueParameter>)Parameters["Discretizers"]; }
}
public ValueParameter MDLActivationIterationParameter {
get { return (ValueParameter)Parameters["MDLActivationIteration"]; }
}
public ValueParameter InitialTheoryLengthRatioParameter {
get { return (ValueParameter)Parameters["InitialTheoryLengthRatio"]; }
}
public ValueParameter WeightRelaxFactorParameter {
get { return (ValueParameter)Parameters["WeightRelaxFactor"]; }
}
public ValueParameter WeightAdaptionIterationsParameter {
get { return (ValueParameter)Parameters["WeightAdaptionIterations"]; }
}
public ValueParameter NumberOfStrataParameter {
get { return (ValueParameter)Parameters["NumberOfStrata"]; }
}
#endregion
#region Properties
public IntValue Seed {
get { return SeedParameter.Value; }
set { SeedParameter.Value = value; }
}
public BoolValue SetSeedRandomly {
get { return SetSeedRandomlyParameter.Value; }
set { SetSeedRandomlyParameter.Value = value; }
}
public IntValue PopulationSize {
get { return PopulationSizeParameter.Value; }
set { PopulationSizeParameter.Value = value; }
}
public INichingSingleObjectiveSelector Selector {
get { return SelectorParameter.Value; }
set { SelectorParameter.Value = value; }
}
public PercentValue CrossoverProbability {
get { return CrossoverProbabilityParameter.Value; }
set { CrossoverProbabilityParameter.Value = value; }
}
public ICrossover Crossover {
get { return CrossoverParameter.Value; }
set { CrossoverParameter.Value = value; }
}
public PercentValue MutationProbability {
get { return MutationProbabilityParameter.Value; }
set { MutationProbabilityParameter.Value = value; }
}
public IManipulator Mutator {
get { return MutatorParameter.Value; }
set { MutatorParameter.Value = value; }
}
public IntValue Elites {
get { return ElitesParameter.Value; }
set { ElitesParameter.Value = value; }
}
public MultiAnalyzer Analyzer {
get { return AnalyzerParameter.Value; }
set { AnalyzerParameter.Value = value; }
}
public GAssistSpecialStageMultiOperator SpecialStages {
get { return SpecialStagesParameter.Value; }
set { SpecialStagesParameter.Value = value; }
}
public IDiscreteDoubleValueModifier ReinitializeCurveOperator {
get { return ReinitializeCurveOperatorParameter.Value; }
set { ReinitializeCurveOperatorParameter.Value = value; }
}
public IntValue MaximumGenerations {
get { return MaximumGenerationsParameter.Value; }
set { MaximumGenerationsParameter.Value = value; }
}
private RandomCreator RandomCreator {
get { return (RandomCreator)OperatorGraph.InitialOperator; }
}
private VariableCreator VariableCreator {
get { return (VariableCreator)RandomCreator.Successor; }
}
private Placeholder InitialDefaultRuleExecution {
get { return (Placeholder)VariableCreator.Successor; }
}
private Placeholder MDLIterationPlaceholder {
get { return (Placeholder)InitialDefaultRuleExecution.Successor; }
}
private ILASOperator ILASOperator {
get { return (ILASOperator)MDLIterationPlaceholder.Successor; }
}
private InitializeDiscretizersOperator InitializeDiscretizers {
get { return (InitializeDiscretizersOperator)ILASOperator.Successor; }
}
private NicheSolutionCreator SolutionsCreator {
get { return (NicheSolutionCreator)InitializeDiscretizers.Successor; }
}
private GAssistMainLoop GeneticAlgorithmMainLoop {
get { return FindMainLoop(SolutionsCreator.Successor); }
}
[Storable]
private BestAverageWorstQualityAnalyzer qualityAnalyzer;
#endregion
public GAssist()
: base() {
Parameters.Add(new ValueParameter("Seed", "The random seed used to initialize the new pseudo random number generator.", new IntValue(0)));
Parameters.Add(new ValueParameter("SetSeedRandomly", "True if the random seed should be set to a random value, otherwise false.", new BoolValue(true)));
Parameters.Add(new ValueParameter("PopulationSize", "The size of the population of solutions.", new IntValue(100)));
Parameters.Add(new ConstrainedValueParameter("Selector", "The operator used to select solutions for reproduction."));
Parameters.Add(new ValueParameter("CrossoverProbability", "The probability that the Crossover operator is applied on a solution.", new PercentValue(0.9)));
Parameters.Add(new ConstrainedValueParameter("Crossover", "The operator used to cross solutions."));
Parameters.Add(new ValueParameter("MutationProbability", "The probability that the mutation operator is applied on a solution.", new PercentValue(0.05)));
Parameters.Add(new OptionalConstrainedValueParameter("Mutator", "The operator used to mutate solutions."));
Parameters.Add(new ValueParameter("Elites", "The numer of elite solutions which are kept in each generation.", new IntValue(1)));
Parameters.Add(new ValueParameter("Analyzer", "The operator used to analyze each generation.", new MultiAnalyzer()));
Parameters.Add(new ValueParameter("SpecialStages", "", new GAssistSpecialStageMultiOperator()));
Parameters.Add(new ValueParameter("MaximumGenerations", "The maximum number of generations which should be processed.", new IntValue(1000)));
Parameters.Add(new ValueParameter("SplitProbability", "", new PercentValue(0.05)));
Parameters.Add(new ValueParameter("MergeProbability", "", new PercentValue(0.05)));
Parameters.Add(new ValueParameter("StartReinitializeProbability", "", new PercentValue(0.05)));
Parameters.Add(new ValueParameter("EndReinitializeProbability", "", new PercentValue(Double.Epsilon)));
Parameters.Add(new ValueParameter("OneProbability", "", new PercentValue(0.75)));
Parameters.Add(new ValueParameter("MaximumNumberOfIntervals", "", new IntValue(5)));
Parameters.Add(new ValueParameter("InitialNumberOfRules", "", new IntValue(20)));
Parameters.Add(new ValueParameter("MDLIterationOperator", "", new MDLIterationOperator()));
Parameters.Add(new ConstrainedValueParameter("DefaultRule", ""));
Parameters.Add(new ConstrainedValueParameter("ReinitializeCurveOperator", ""));
Parameters.Add(new ValueParameter>("Discretizers", "", new ItemCollection()));
Parameters.Add(new ValueParameter("MDLActivationIteration", "", new IntValue(25)));
Parameters.Add(new ValueParameter("InitialTheoryLengthRatio", "", new DoubleValue(0.075)));
Parameters.Add(new ValueParameter("WeightRelaxFactor", "", new DoubleValue(0.9)));
Parameters.Add(new ValueParameter("WeightAdaptionIterations", "", new IntValue(10)));
Parameters.Add(new ValueParameter("NumberOfStrata", "", new IntValue(2)));
RandomCreator randomCreator = new RandomCreator();
VariableCreator variableCreator = new VariableCreator();
Placeholder initialDefaultRuleExecution = new Placeholder();
Placeholder mdlIterationPlaceholder = new Placeholder();
ILASOperator ilasOperator = new ILASOperator();
InitializeDiscretizersOperator initializeDiscretizers = new InitializeDiscretizersOperator();
NicheSolutionCreator solutionsCreator = new NicheSolutionCreator();
SubScopesCounter subScopesCounter = new SubScopesCounter();
ResultsCollector resultsCollector = new ResultsCollector();
GAssistMainLoop mainLoop = new GAssistMainLoop();
OperatorGraph.InitialOperator = randomCreator;
randomCreator.RandomParameter.ActualName = "Random";
randomCreator.SeedParameter.ActualName = SeedParameter.Name;
randomCreator.SeedParameter.Value = null;
randomCreator.SetSeedRandomlyParameter.ActualName = SetSeedRandomlyParameter.Name;
randomCreator.SetSeedRandomlyParameter.Value = null;
randomCreator.Successor = variableCreator;
variableCreator.CollectedValues.Add(new ValueParameter("Generations", new IntValue(0))); // Class GAssistMainLoop expects this to be called Generations
variableCreator.Successor = initialDefaultRuleExecution;
initialDefaultRuleExecution.Name = "Initial Default Rule Execution";
initialDefaultRuleExecution.OperatorParameter.ActualName = DefaultRuleParameter.Name;
initialDefaultRuleExecution.Successor = mdlIterationPlaceholder;
mdlIterationPlaceholder.Name = "MDL Iteration Operator";
mdlIterationPlaceholder.OperatorParameter.ActualName = MDLIterationOperatorParameter.Name;
mdlIterationPlaceholder.Successor = ilasOperator;
ilasOperator.RandomParameter.ActualName = randomCreator.RandomParameter.ActualName;
ilasOperator.NumberOfStrataParameter.ActualName = NumberOfStrataParameter.Name;
ilasOperator.Successor = initializeDiscretizers;
initializeDiscretizers.DiscretizersParameter.ActualName = DiscretizersParameter.Name;
initializeDiscretizers.Successor = solutionsCreator;
solutionsCreator.NumberOfSolutionsParameter.ActualName = PopulationSizeParameter.Name;
solutionsCreator.Successor = subScopesCounter;
subScopesCounter.Name = "Initialize EvaluatedSolutions";
subScopesCounter.ValueParameter.ActualName = "EvaluatedSolutions";
subScopesCounter.Successor = resultsCollector;
resultsCollector.CollectedValues.Add(new LookupParameter("Evaluated Solutions", null, "EvaluatedSolutions"));
resultsCollector.ResultsParameter.ActualName = "Results";
resultsCollector.Successor = mainLoop;
mainLoop.MDLIterationParameter.ActualName = MDLIterationOperatorParameter.Name;
mainLoop.DefaultRuleParameter.ActualName = DefaultRuleParameter.Name;
mainLoop.SelectorParameter.ActualName = SelectorParameter.Name;
mainLoop.CrossoverParameter.ActualName = CrossoverParameter.Name;
mainLoop.CrossoverProbabilityParameter.ActualName = CrossoverProbabilityParameter.Name;
mainLoop.ElitesParameter.ActualName = ElitesParameter.Name;
mainLoop.MaximumGenerationsParameter.ActualName = MaximumGenerationsParameter.Name;
mainLoop.MutatorParameter.ActualName = MutatorParameter.Name;
mainLoop.MutationProbabilityParameter.ActualName = MutationProbabilityParameter.Name;
mainLoop.RandomParameter.ActualName = RandomCreator.RandomParameter.ActualName;
mainLoop.AnalyzerParameter.ActualName = AnalyzerParameter.Name;
mainLoop.SpecialStagesParameter.ActualName = SpecialStagesParameter.Name;
mainLoop.EvaluatedSolutionsParameter.ActualName = "EvaluatedSolutions";
mainLoop.PopulationSizeParameter.ActualName = PopulationSizeParameter.Name;
mainLoop.ResultsParameter.ActualName = "Results";
mainLoop.ReinitializationProbabilityOperatorParameter.ActualName = ReinitializeCurveOperatorParameter.Name;
foreach (INichingSingleObjectiveSelector selector in ApplicationManager.Manager.GetInstances().Where(x => !(x is IMultiObjectiveSelector)).OrderBy(x => x.Name))
SelectorParameter.ValidValues.Add(selector);
ParameterizeSelectors();
qualityAnalyzer = new BestAverageWorstQualityAnalyzer();
ParameterizeAnalyzers();
UpdateAnalyzers();
foreach (IDiscreteDoubleValueModifier op in ApplicationManager.Manager.GetInstances().OrderBy(x => x.Name)) {
ReinitializeCurveOperatorParameter.ValidValues.Add(op);
}
ReinitializeCurveOperatorParameter.Value = ReinitializeCurveOperatorParameter.ValidValues.First(x => x.GetType().Equals(typeof(LinearDiscreteDoubleValueModifier)));
ParameterizeReinitializeCurveOperators();
InitializeSpecialStages();
UpdateDiscretizers();
Initialize();
}
private void UpdateDiscretizers() {
// change to add more
//DiscretizersParameter.Value.AddRange(ApplicationManager.Manager.GetInstances());
DiscretizersParameter.Value.Add(new UniformWidthDiscretizer(4));
DiscretizersParameter.Value.Add(new UniformWidthDiscretizer(5));
DiscretizersParameter.Value.Add(new UniformWidthDiscretizer(6));
DiscretizersParameter.Value.Add(new UniformWidthDiscretizer(7));
DiscretizersParameter.Value.Add(new UniformWidthDiscretizer(8));
DiscretizersParameter.Value.Add(new UniformWidthDiscretizer(10));
DiscretizersParameter.Value.Add(new UniformWidthDiscretizer(15));
DiscretizersParameter.Value.Add(new UniformWidthDiscretizer(20));
DiscretizersParameter.Value.Add(new UniformWidthDiscretizer(25));
}
private void ParameterizeReinitializeCurveOperators() {
foreach (IDiscreteDoubleValueModifier op in ReinitializeCurveOperatorParameter.ValidValues) {
op.IndexParameter.ActualName = "Generations";
op.IndexParameter.Hidden = true;
op.StartIndexParameter.Value = new IntValue(0);
op.EndIndexParameter.ActualName = MaximumGenerationsParameter.Name;
op.ValueParameter.ActualName = "ReinitializeProbability";
op.ValueParameter.Hidden = true;
op.StartValueParameter.ActualName = StartReinitializeProbabilityParameter.Name;
op.StartValueParameter.Hidden = true;
op.EndValueParameter.ActualName = EndReinitializeProbabilityParameter.Name;
op.EndValueParameter.Hidden = true;
ParameterizeStochasticOperator(op);
}
}
private void InitializeSpecialStages() {
SpecialStages.Operators.Clear();
var splitOperator = new SplitOperator();
splitOperator.ProbabilityParameter.ActualName = SplitProbabilityParameter.Name;
//change
splitOperator.IndividualParameter.ActualName = "DecisionList";
SpecialStages.Operators.Add(splitOperator);
var mergeOperator = new MergeOperator();
mergeOperator.ProbabilityParameter.ActualName = MergeProbabilityParameter.Name;
//change
mergeOperator.IndividualParameter.ActualName = "DecisionList";
SpecialStages.Operators.Add(mergeOperator);
var reinitializeOperator = new ReinitializeOperator();
reinitializeOperator.ProbabilityParameter.ActualName = "ReinitializeProbability";
reinitializeOperator.DiscretizersParameter.ActualName = "Discretizers";
reinitializeOperator.OneProbabilityParameter.ActualName = OneProbabilityParameter.Name;
//change
reinitializeOperator.IndividualParameter.ActualName = "DecisionList";
SpecialStages.Operators.Add(reinitializeOperator);
foreach (var op in SpecialStages.Operators) {
op.RandomParameter.ActualName = RandomCreator.RandomParameter.ActualName;
}
}
[StorableConstructor]
private GAssist(bool deserializing) : base(deserializing) { }
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() {
Initialize();
}
private GAssist(GAssist original, Cloner cloner)
: base(original, cloner) {
qualityAnalyzer = cloner.Clone(original.qualityAnalyzer);
Initialize();
}
public override IDeepCloneable Clone(Cloner cloner) {
return new GAssist(this, cloner);
}
public override void Prepare() {
if (Problem != null) base.Prepare();
}
#region Events
protected override void OnProblemChanged() {
ParameterizeStochasticOperator(Problem.SolutionCreator);
ParameterizeStochasticOperator(Problem.Evaluator);
ParameterizeMDLOperator(Problem.Evaluator);
ParameterizeIterationBasedOperators(Problem.Evaluator);
foreach (IOperator op in Problem.Operators.OfType()) {
ParameterizeStochasticOperator(op);
}
ParameterizeSolutionsCreator();
ParameterizeGeneticAlgorithmMainLoop();
ParameterizeMDL();
ParameterizeSelectors();
ParameterizeAnalyzers();
ParameterizeIterationBasedOperators();
UpdateDefaultRuleOperators();
UpdateCrossovers();
UpdateMutators();
UpdateAnalyzers();
Problem.Evaluator.QualityParameter.ActualNameChanged += new EventHandler(Evaluator_QualityParameter_ActualNameChanged);
ILASOperator.ProblemDataParameter.ActualName = Problem.ProblemDataParameter.Name;
InitializeDiscretizers.ProblemDataParameter.ActualName = Problem.ProblemDataParameter.Name;
base.OnProblemChanged();
}
private void ParameterizeMDL() {
MDLIterationOperatorParameter.Value.QualityParameter.ActualName = Problem.Evaluator.QualityParameter.ActualName;
//change
MDLIterationOperatorParameter.Value.IndividualParameter.ActualName = "DecisionList";
MDLIterationOperatorParameter.Value.ProblemDataParameter.ActualName = Problem.ProblemDataParameter.Name;
MDLIterationOperatorParameter.Value.MaximizationParameter.ActualName = Problem.MaximizationParameter.Name;
MDLIterationOperatorParameter.Value.InitialTheoryLengthRatioParameter.ActualName = InitialTheoryLengthRatioParameter.Name;
MDLIterationOperatorParameter.Value.MDLActivationIterationParameter.ActualName = MDLActivationIterationParameter.Name;
MDLIterationOperatorParameter.Value.WeightAdaptionIterationsParameter.ActualName = WeightAdaptionIterationsParameter.Name;
MDLIterationOperatorParameter.Value.WeightRelaxFactorParameter.ActualName = WeightRelaxFactorParameter.Name;
MDLIterationOperatorParameter.Value.IterationsParameter.ActualName = "Generations";
}
protected override void Problem_SolutionCreatorChanged(object sender, EventArgs e) {
ParameterizeStochasticOperator(Problem.SolutionCreator);
ParameterizeSolutionsCreator();
base.Problem_SolutionCreatorChanged(sender, e);
}
protected override void Problem_EvaluatorChanged(object sender, EventArgs e) {
ParameterizeStochasticOperator(Problem.Evaluator);
ParameterizeSolutionsCreator();
ParameterizeGeneticAlgorithmMainLoop();
ParameterizeSelectors();
ParameterizeAnalyzers();
Problem.Evaluator.QualityParameter.ActualNameChanged += new EventHandler(Evaluator_QualityParameter_ActualNameChanged);
Problem.Evaluator.StrataParameter.ActualName = ILASOperator.StrataParameter.ActualName;
base.Problem_EvaluatorChanged(sender, e);
}
protected override void Problem_OperatorsChanged(object sender, EventArgs e) {
foreach (IOperator op in Problem.Operators.OfType()) ParameterizeStochasticOperator(op);
ParameterizeIterationBasedOperators();
UpdateCrossovers();
UpdateMutators();
UpdateAnalyzers();
base.Problem_OperatorsChanged(sender, e);
}
private void ElitesParameter_ValueChanged(object sender, EventArgs e) {
Elites.ValueChanged += new EventHandler(Elites_ValueChanged);
ParameterizeSelectors();
}
private void Elites_ValueChanged(object sender, EventArgs e) {
ParameterizeSelectors();
}
private void PopulationSizeParameter_ValueChanged(object sender, EventArgs e) {
PopulationSize.ValueChanged += new EventHandler(PopulationSize_ValueChanged);
ParameterizeSelectors();
}
private void PopulationSize_ValueChanged(object sender, EventArgs e) {
ParameterizeSelectors();
}
private void Evaluator_QualityParameter_ActualNameChanged(object sender, EventArgs e) {
ParameterizeGeneticAlgorithmMainLoop();
ParameterizeSelectors();
ParameterizeAnalyzers();
}
#endregion
#region Helpers
private void Initialize() {
PopulationSizeParameter.ValueChanged += new EventHandler(PopulationSizeParameter_ValueChanged);
PopulationSize.ValueChanged += new EventHandler(PopulationSize_ValueChanged);
ElitesParameter.ValueChanged += new EventHandler(ElitesParameter_ValueChanged);
Elites.ValueChanged += new EventHandler(Elites_ValueChanged);
if (Problem != null) {
Problem.Evaluator.QualityParameter.ActualNameChanged += new EventHandler(Evaluator_QualityParameter_ActualNameChanged);
}
}
private void ParameterizeSolutionsCreator() {
SolutionsCreator.EvaluatorParameter.ActualName = Problem.EvaluatorParameter.Name;
SolutionsCreator.SolutionCreatorParameter.ActualName = Problem.SolutionCreatorParameter.Name;
SolutionsCreator.GAssistNichesProblemDataParameter.ActualName = Problem.ProblemDataParameter.Name;
// change!
((IGAssistSolutionCreator)Problem.SolutionCreatorParameter.ActualValue).DiscretizersParameter.ActualName = "Discretizers";
}
private void ParameterizeGeneticAlgorithmMainLoop() {
GeneticAlgorithmMainLoop.EvaluatorParameter.ActualName = Problem.EvaluatorParameter.Name;
GeneticAlgorithmMainLoop.MaximizationParameter.ActualName = Problem.MaximizationParameter.Name;
GeneticAlgorithmMainLoop.QualityParameter.ActualName = Problem.Evaluator.QualityParameter.ActualName;
}
private void ParameterizeStochasticOperator(IOperator op) {
IStochasticOperator stochasticOp = op as IStochasticOperator;
if (stochasticOp != null) {
stochasticOp.RandomParameter.ActualName = RandomCreator.RandomParameter.ActualName;
stochasticOp.RandomParameter.Hidden = true;
}
}
private void ParameterizeMDLOperator(IOperator op) {
IMDLCalculatorBasedOperator stochasticOp = op as IMDLCalculatorBasedOperator;
if (stochasticOp != null) {
stochasticOp.MDLCalculatorParameter.ActualName = MDLIterationOperatorParameter.Value.MDLCalculatorParameter.ActualName;
}
}
private void ParameterizeSelectors() {
foreach (INichingSingleObjectiveSelector selector in SelectorParameter.ValidValues) {
selector.CopySelected = new BoolValue(true);
selector.NumberOfSelectedSubScopesParameter.Value = new IntValue(2 * (PopulationSizeParameter.Value.Value - ElitesParameter.Value.Value));
selector.NumberOfSelectedSubScopesParameter.Hidden = true;
selector.ParentsPerChildParameter.Value = new IntValue(2);
ParameterizeStochasticOperator(selector);
ParameterizeIterationBasedOperators(selector);
}
if (Problem != null) {
foreach (INichingSingleObjectiveSelector selector in SelectorParameter.ValidValues) {
selector.MaximizationParameter.ActualName = Problem.MaximizationParameter.Name;
selector.MaximizationParameter.Hidden = true;
selector.QualityParameter.ActualName = Problem.Evaluator.QualityParameter.ActualName;
selector.QualityParameter.Hidden = true;
selector.NichingParameter.ActualName = Problem.NichingParameterName;
selector.GAssistNichesProblemDataParameter.ActualName = Problem.ProblemDataParameter.Name;
//change
selector.IndividualParameter.ActualName = "DecisionList";
}
foreach (IHierarchicalSingleObjectiveSelector selector in SelectorParameter.ValidValues.OfType()) {
selector.LengthParameter.ActualName = Problem.Evaluator.LengthParameter.ActualName;
}
}
}
private void ParameterizeAnalyzers() {
qualityAnalyzer.ResultsParameter.ActualName = "Results";
qualityAnalyzer.ResultsParameter.Hidden = true;
if (Problem != null) {
qualityAnalyzer.MaximizationParameter.ActualName = Problem.MaximizationParameter.Name;
qualityAnalyzer.MaximizationParameter.Hidden = true;
qualityAnalyzer.QualityParameter.ActualName = Problem.Evaluator.QualityParameter.ActualName;
qualityAnalyzer.QualityParameter.Depth = 1;
qualityAnalyzer.QualityParameter.Hidden = true;
qualityAnalyzer.BestKnownQualityParameter.ActualName = Problem.BestKnownQualityParameter.Name;
qualityAnalyzer.BestKnownQualityParameter.Hidden = true;
}
}
private void ParameterizeIterationBasedOperators(IOperator op) {
IIterationBasedOperator iterationOp = op as IIterationBasedOperator;
if (iterationOp != null) {
ParameterizeIterationBasedOperators(iterationOp);
}
}
private void ParameterizeIterationBasedOperators(IIterationBasedOperator op) {
op.IterationsParameter.ActualName = "Generations";
op.IterationsParameter.Hidden = true;
op.MaximumIterationsParameter.ActualName = "MaximumGenerations";
op.MaximumIterationsParameter.Hidden = true;
}
private void ParameterizeIterationBasedOperators() {
if (Problem != null) {
foreach (IIterationBasedOperator op in Problem.Operators.OfType()) {
ParameterizeIterationBasedOperators(op);
}
}
}
private void UpdateDefaultRuleOperators() {
IDefaultRuleOperator oldDefaultRule = DefaultRuleParameter.Value;
DefaultRuleParameter.ValidValues.Clear();
IDefaultRuleOperator defaultdefaultRule = Problem.Operators.OfType().FirstOrDefault();
foreach (IDefaultRuleOperator defaultRule in Problem.Operators.OfType().OrderBy(x => x.Name))
DefaultRuleParameter.ValidValues.Add(defaultRule);
if (oldDefaultRule != null) {
IDefaultRuleOperator defaultRule = DefaultRuleParameter.ValidValues.FirstOrDefault(x => x.GetType() == oldDefaultRule.GetType());
if (defaultRule != null) DefaultRuleParameter.Value = defaultRule;
else oldDefaultRule = null;
}
if (oldDefaultRule == null && defaultdefaultRule != null) {
DefaultRuleParameter.Value = defaultdefaultRule;
SolutionsCreator.NichingParameter.ActualName = defaultdefaultRule.NichingParameter.ActualName;
}
}
private void UpdateCrossovers() {
ICrossover oldCrossover = CrossoverParameter.Value;
CrossoverParameter.ValidValues.Clear();
ICrossover defaultCrossover = Problem.Operators.OfType().FirstOrDefault();
foreach (ICrossover crossover in Problem.Operators.OfType().OrderBy(x => x.Name))
CrossoverParameter.ValidValues.Add(crossover);
if (oldCrossover != null) {
ICrossover crossover = CrossoverParameter.ValidValues.FirstOrDefault(x => x.GetType() == oldCrossover.GetType());
if (crossover != null) CrossoverParameter.Value = crossover;
else oldCrossover = null;
}
if (oldCrossover == null && defaultCrossover != null)
CrossoverParameter.Value = defaultCrossover;
}
private void UpdateMutators() {
IManipulator oldMutator = MutatorParameter.Value;
MutatorParameter.ValidValues.Clear();
IManipulator defaultMutator = Problem.Operators.OfType().FirstOrDefault();
foreach (IManipulator mutator in Problem.Operators.OfType().OrderBy(x => x.Name))
MutatorParameter.ValidValues.Add(mutator);
if (oldMutator != null) {
IManipulator mutator = MutatorParameter.ValidValues.FirstOrDefault(x => x.GetType() == oldMutator.GetType());
if (mutator != null) MutatorParameter.Value = mutator;
}
if (oldMutator == null && defaultMutator != null)
MutatorParameter.Value = defaultMutator;
}
private void UpdateAnalyzers() {
Analyzer.Operators.Clear();
if (Problem != null) {
foreach (IAnalyzer analyzer in Problem.Operators.OfType()) {
foreach (IScopeTreeLookupParameter param in analyzer.Parameters.OfType())
param.Depth = 1;
Analyzer.Operators.Add(analyzer, analyzer.EnabledByDefault);
}
}
Analyzer.Operators.Add(qualityAnalyzer, qualityAnalyzer.EnabledByDefault);
}
private GAssistMainLoop FindMainLoop(IOperator start) {
IOperator mainLoop = start;
while (mainLoop != null && !(mainLoop is GAssistMainLoop))
mainLoop = ((SingleSuccessorOperator)mainLoop).Successor;
if (mainLoop == null) return null;
else return (GAssistMainLoop)mainLoop;
}
#endregion
}
}