#region License Information /* HeuristicLab * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Algorithms.DataAnalysis { [StorableClass] [Item(Name = "CovarianceRationalQuadraticArd", Description = "Rational quadratic covariance function with automatic relevance determination for Gaussian processes.")] public sealed class CovarianceRationalQuadraticArd : ParameterizedNamedItem, ICovarianceFunction { public IValueParameter ScaleParameter { get { return (IValueParameter)Parameters["Scale"]; } } public IValueParameter InverseLengthParameter { get { return (IValueParameter)Parameters["InverseLength"]; } } public IValueParameter ShapeParameter { get { return (IValueParameter)Parameters["Shape"]; } } [StorableConstructor] private CovarianceRationalQuadraticArd(bool deserializing) : base(deserializing) { } private CovarianceRationalQuadraticArd(CovarianceRationalQuadraticArd original, Cloner cloner) : base(original, cloner) { } public CovarianceRationalQuadraticArd() : base() { Name = ItemName; Description = ItemDescription; Parameters.Add(new OptionalValueParameter("Scale", "The scale parameter of the rational quadratic covariance function with ARD.")); Parameters.Add(new OptionalValueParameter("InverseLength", "The inverse length parameter for automatic relevance determination.")); Parameters.Add(new OptionalValueParameter("Shape", "The shape parameter (alpha) of the rational quadratic covariance function with ARD.")); } public override IDeepCloneable Clone(Cloner cloner) { return new CovarianceRationalQuadraticArd(this, cloner); } public int GetNumberOfParameters(int numberOfVariables) { return (ScaleParameter.Value != null ? 0 : 1) + (ShapeParameter.Value != null ? 0 : 1) + (InverseLengthParameter.Value != null ? 0 : numberOfVariables); } public void SetParameter(double[] p) { double scale, shape; double[] inverseLength; GetParameterValues(p, out scale, out shape, out inverseLength); ScaleParameter.Value = new DoubleValue(scale); ShapeParameter.Value = new DoubleValue(shape); InverseLengthParameter.Value = new DoubleArray(inverseLength); } private void GetParameterValues(double[] p, out double scale, out double shape, out double[] inverseLength) { int c = 0; // gather parameter values if (InverseLengthParameter.Value != null) { inverseLength = InverseLengthParameter.Value.ToArray(); } else { int length = p.Length; if (ScaleParameter.Value == null) length--; if (ShapeParameter.Value == null) length--; inverseLength = p.Select(e => 1.0 / Math.Exp(e)).Take(length).ToArray(); c += inverseLength.Length; } if (ScaleParameter.Value != null) { scale = ScaleParameter.Value.Value; } else { scale = Math.Exp(2 * p[c]); c++; } if (ShapeParameter.Value != null) { shape = ShapeParameter.Value.Value; } else { shape = Math.Exp(p[c]); c++; } if (p.Length != c) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovarianceRationalQuadraticArd", "p"); } public ParameterizedCovarianceFunction GetParameterizedCovarianceFunction(double[] p, IEnumerable columnIndices) { double scale, shape; double[] inverseLength; GetParameterValues(p, out scale, out shape, out inverseLength); // create functions var cov = new ParameterizedCovarianceFunction(); cov.Covariance = (x, i, j) => { double d = i == j ? 0.0 : Util.SqrDist(x, i, j, inverseLength, columnIndices); return scale * Math.Pow(1 + 0.5 * d / shape, -shape); }; cov.CrossCovariance = (x, xt, i, j) => { double d = Util.SqrDist(x, i, xt, j, inverseLength, columnIndices); return scale * Math.Pow(1 + 0.5 * d / shape, -shape); }; cov.CovarianceGradient = (x, i, j) => GetGradient(x, i, j, columnIndices, scale, shape, inverseLength); return cov; } private static IEnumerable GetGradient(double[,] x, int i, int j, IEnumerable columnIndices, double scale, double shape, double[] inverseLength) { double d = i == j ? 0.0 : Util.SqrDist(x, i, j, inverseLength, columnIndices); double b = 1 + 0.5 * d / shape; int k = 0; foreach (var columnIndex in columnIndices) { yield return scale * Math.Pow(b, -shape - 1) * Util.SqrDist(x[i, columnIndex] * inverseLength[k], x[j, columnIndex] * inverseLength[k]); k++; } yield return 2 * scale * Math.Pow(b, -shape); yield return scale * Math.Pow(b, -shape) * (0.5 * d / b - shape * Math.Log(b)); } } }