#region License Information
/* HeuristicLab
* Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Algorithms.DataAnalysis {
[StorableClass]
[Item(Name = "CovarianceRationalQuadraticArd",
Description = "Rational quadratic covariance function with automatic relevance determination for Gaussian processes.")]
public sealed class CovarianceRationalQuadraticArd : ParameterizedNamedItem, ICovarianceFunction {
public IValueParameter ScaleParameter {
get { return (IValueParameter)Parameters["Scale"]; }
}
public IValueParameter InverseLengthParameter {
get { return (IValueParameter)Parameters["InverseLength"]; }
}
public IValueParameter ShapeParameter {
get { return (IValueParameter)Parameters["Shape"]; }
}
[StorableConstructor]
private CovarianceRationalQuadraticArd(bool deserializing)
: base(deserializing) {
}
private CovarianceRationalQuadraticArd(CovarianceRationalQuadraticArd original, Cloner cloner)
: base(original, cloner) {
}
public CovarianceRationalQuadraticArd()
: base() {
Name = ItemName;
Description = ItemDescription;
Parameters.Add(new OptionalValueParameter("Scale", "The scale parameter of the rational quadratic covariance function with ARD."));
Parameters.Add(new OptionalValueParameter("InverseLength", "The inverse length parameter for automatic relevance determination."));
Parameters.Add(new OptionalValueParameter("Shape", "The shape parameter (alpha) of the rational quadratic covariance function with ARD."));
}
public override IDeepCloneable Clone(Cloner cloner) {
return new CovarianceRationalQuadraticArd(this, cloner);
}
public int GetNumberOfParameters(int numberOfVariables) {
return
(ScaleParameter.Value != null ? 0 : 1) +
(ShapeParameter.Value != null ? 0 : 1) +
(InverseLengthParameter.Value != null ? 0 : numberOfVariables);
}
public void SetParameter(double[] p) {
double scale, shape;
double[] inverseLength;
GetParameterValues(p, out scale, out shape, out inverseLength);
ScaleParameter.Value = new DoubleValue(scale);
ShapeParameter.Value = new DoubleValue(shape);
InverseLengthParameter.Value = new DoubleArray(inverseLength);
}
private void GetParameterValues(double[] p, out double scale, out double shape, out double[] inverseLength) {
int c = 0;
// gather parameter values
if (InverseLengthParameter.Value != null) {
inverseLength = InverseLengthParameter.Value.ToArray();
} else {
int length = p.Length;
if (ScaleParameter.Value == null) length--;
if (ShapeParameter.Value == null) length--;
inverseLength = p.Select(e => 1.0 / Math.Exp(e)).Take(length).ToArray();
c += inverseLength.Length;
}
if (ScaleParameter.Value != null) {
scale = ScaleParameter.Value.Value;
} else {
scale = Math.Exp(2 * p[c]);
c++;
}
if (ShapeParameter.Value != null) {
shape = ShapeParameter.Value.Value;
} else {
shape = Math.Exp(p[c]);
c++;
}
if (p.Length != c) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovarianceRationalQuadraticArd", "p");
}
public ParameterizedCovarianceFunction GetParameterizedCovarianceFunction(double[] p, IEnumerable columnIndices) {
double scale, shape;
double[] inverseLength;
GetParameterValues(p, out scale, out shape, out inverseLength);
// create functions
var cov = new ParameterizedCovarianceFunction();
cov.Covariance = (x, i, j) => {
double d = i == j
? 0.0
: Util.SqrDist(x, i, j, inverseLength, columnIndices);
return scale * Math.Pow(1 + 0.5 * d / shape, -shape);
};
cov.CrossCovariance = (x, xt, i, j) => {
double d = Util.SqrDist(x, i, xt, j, inverseLength, columnIndices);
return scale * Math.Pow(1 + 0.5 * d / shape, -shape);
};
cov.CovarianceGradient = (x, i, j) => GetGradient(x, i, j, columnIndices, scale, shape, inverseLength);
return cov;
}
private static IEnumerable GetGradient(double[,] x, int i, int j, IEnumerable columnIndices, double scale, double shape, double[] inverseLength) {
double d = i == j
? 0.0
: Util.SqrDist(x, i, j, inverseLength, columnIndices);
double b = 1 + 0.5 * d / shape;
int k = 0;
foreach (var columnIndex in columnIndices) {
yield return scale * Math.Pow(b, -shape - 1) * Util.SqrDist(x[i, columnIndex] * inverseLength[k], x[j, columnIndex] * inverseLength[k]);
k++;
}
yield return 2 * scale * Math.Pow(b, -shape);
yield return scale * Math.Pow(b, -shape) * (0.5 * d / b - shape * Math.Log(b));
}
}
}