Free cookie consent management tool by TermsFeed Policy Generator

source: branches/LearningClassifierSystems/HeuristicLab.Algorithms.DataAnalysis/3.4/GaussianProcess/CovarianceFunctions/CovarianceRationalQuadraticArd.cs @ 13042

Last change on this file since 13042 was 9357, checked in by gkronber, 12 years ago

#1902 minor code improvements: removed commented code, always supply non-null columnIndizes.

File size: 6.1 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Parameters;
29using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
30
31namespace HeuristicLab.Algorithms.DataAnalysis {
32  [StorableClass]
33  [Item(Name = "CovarianceRationalQuadraticArd",
34    Description = "Rational quadratic covariance function with automatic relevance determination for Gaussian processes.")]
35  public sealed class CovarianceRationalQuadraticArd : ParameterizedNamedItem, ICovarianceFunction {
36    public IValueParameter<DoubleValue> ScaleParameter {
37      get { return (IValueParameter<DoubleValue>)Parameters["Scale"]; }
38    }
39
40    public IValueParameter<DoubleArray> InverseLengthParameter {
41      get { return (IValueParameter<DoubleArray>)Parameters["InverseLength"]; }
42    }
43
44    public IValueParameter<DoubleValue> ShapeParameter {
45      get { return (IValueParameter<DoubleValue>)Parameters["Shape"]; }
46    }
47
48    [StorableConstructor]
49    private CovarianceRationalQuadraticArd(bool deserializing)
50      : base(deserializing) {
51    }
52
53    private CovarianceRationalQuadraticArd(CovarianceRationalQuadraticArd original, Cloner cloner)
54      : base(original, cloner) {
55    }
56
57    public CovarianceRationalQuadraticArd()
58      : base() {
59      Name = ItemName;
60      Description = ItemDescription;
61
62      Parameters.Add(new OptionalValueParameter<DoubleValue>("Scale", "The scale parameter of the rational quadratic covariance function with ARD."));
63      Parameters.Add(new OptionalValueParameter<DoubleArray>("InverseLength", "The inverse length parameter for automatic relevance determination."));
64      Parameters.Add(new OptionalValueParameter<DoubleValue>("Shape", "The shape parameter (alpha) of the rational quadratic covariance function with ARD."));
65    }
66
67    public override IDeepCloneable Clone(Cloner cloner) {
68      return new CovarianceRationalQuadraticArd(this, cloner);
69    }
70
71    public int GetNumberOfParameters(int numberOfVariables) {
72      return
73        (ScaleParameter.Value != null ? 0 : 1) +
74        (ShapeParameter.Value != null ? 0 : 1) +
75        (InverseLengthParameter.Value != null ? 0 : numberOfVariables);
76    }
77
78    public void SetParameter(double[] p) {
79      double scale, shape;
80      double[] inverseLength;
81      GetParameterValues(p, out scale, out shape, out inverseLength);
82      ScaleParameter.Value = new DoubleValue(scale);
83      ShapeParameter.Value = new DoubleValue(shape);
84      InverseLengthParameter.Value = new DoubleArray(inverseLength);
85    }
86
87    private void GetParameterValues(double[] p, out double scale, out double shape, out double[] inverseLength) {
88      int c = 0;
89      // gather parameter values
90      if (InverseLengthParameter.Value != null) {
91        inverseLength = InverseLengthParameter.Value.ToArray();
92      } else {
93        int length = p.Length;
94        if (ScaleParameter.Value == null) length--;
95        if (ShapeParameter.Value == null) length--;
96        inverseLength = p.Select(e => 1.0 / Math.Exp(e)).Take(length).ToArray();
97        c += inverseLength.Length;
98      }
99      if (ScaleParameter.Value != null) {
100        scale = ScaleParameter.Value.Value;
101      } else {
102        scale = Math.Exp(2 * p[c]);
103        c++;
104      }
105      if (ShapeParameter.Value != null) {
106        shape = ShapeParameter.Value.Value;
107      } else {
108        shape = Math.Exp(p[c]);
109        c++;
110      }
111      if (p.Length != c) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovarianceRationalQuadraticArd", "p");
112    }
113
114    public ParameterizedCovarianceFunction GetParameterizedCovarianceFunction(double[] p, IEnumerable<int> columnIndices) {
115      double scale, shape;
116      double[] inverseLength;
117      GetParameterValues(p, out scale, out shape, out inverseLength);
118      // create functions
119      var cov = new ParameterizedCovarianceFunction();
120      cov.Covariance = (x, i, j) => {
121        double d = i == j
122                    ? 0.0
123                    : Util.SqrDist(x, i, j, inverseLength, columnIndices);
124        return scale * Math.Pow(1 + 0.5 * d / shape, -shape);
125      };
126      cov.CrossCovariance = (x, xt, i, j) => {
127        double d = Util.SqrDist(x, i, xt, j, inverseLength, columnIndices);
128        return scale * Math.Pow(1 + 0.5 * d / shape, -shape);
129      };
130      cov.CovarianceGradient = (x, i, j) => GetGradient(x, i, j, columnIndices, scale, shape, inverseLength);
131      return cov;
132    }
133
134    private static IEnumerable<double> GetGradient(double[,] x, int i, int j, IEnumerable<int> columnIndices, double scale, double shape, double[] inverseLength) {
135      double d = i == j
136                   ? 0.0
137                   : Util.SqrDist(x, i, j, inverseLength, columnIndices);
138      double b = 1 + 0.5 * d / shape;
139      int k = 0;
140      foreach (var columnIndex in columnIndices) {
141        yield return scale * Math.Pow(b, -shape - 1) * Util.SqrDist(x[i, columnIndex] * inverseLength[k], x[j, columnIndex] * inverseLength[k]);
142        k++;
143      }
144      yield return 2 * scale * Math.Pow(b, -shape);
145      yield return scale * Math.Pow(b, -shape) * (0.5 * d / b - shape * Math.Log(b));
146    }
147  }
148}
Note: See TracBrowser for help on using the repository browser.