#region License Information /* HeuristicLab * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Collections; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.DataAnalysis { /// /// Represents classification solutions that contain an ensemble of multiple classification models /// [StorableClass] [Item("Classification Ensemble Solution", "A classification solution that contains an ensemble of multiple classification models")] [Creatable(CreatableAttribute.Categories.DataAnalysisEnsembles, Priority = 110)] public sealed class ClassificationEnsembleSolution : ClassificationSolutionBase, IClassificationEnsembleSolution { private readonly Dictionary trainingEvaluationCache = new Dictionary(); private readonly Dictionary testEvaluationCache = new Dictionary(); private readonly Dictionary evaluationCache = new Dictionary(); public new IClassificationEnsembleModel Model { get { return (IClassificationEnsembleModel)base.Model; } } public new ClassificationEnsembleProblemData ProblemData { get { return (ClassificationEnsembleProblemData)base.ProblemData; } set { base.ProblemData = value; } } private readonly ItemCollection classificationSolutions; public IItemCollection ClassificationSolutions { get { return classificationSolutions; } } [Storable] private Dictionary trainingPartitions; [Storable] private Dictionary testPartitions; [StorableConstructor] private ClassificationEnsembleSolution(bool deserializing) : base(deserializing) { classificationSolutions = new ItemCollection(); } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { foreach (var model in Model.Models) { IClassificationProblemData problemData = (IClassificationProblemData)ProblemData.Clone(); problemData.TrainingPartition.Start = trainingPartitions[model].Start; problemData.TrainingPartition.End = trainingPartitions[model].End; problemData.TestPartition.Start = testPartitions[model].Start; problemData.TestPartition.End = testPartitions[model].End; classificationSolutions.Add(model.CreateClassificationSolution(problemData)); } RegisterClassificationSolutionsEventHandler(); } private ClassificationEnsembleSolution(ClassificationEnsembleSolution original, Cloner cloner) : base(original, cloner) { trainingPartitions = new Dictionary(); testPartitions = new Dictionary(); foreach (var pair in original.trainingPartitions) { trainingPartitions[cloner.Clone(pair.Key)] = cloner.Clone(pair.Value); } foreach (var pair in original.testPartitions) { testPartitions[cloner.Clone(pair.Key)] = cloner.Clone(pair.Value); } trainingEvaluationCache = new Dictionary(original.ProblemData.TrainingIndices.Count()); testEvaluationCache = new Dictionary(original.ProblemData.TestIndices.Count()); classificationSolutions = cloner.Clone(original.classificationSolutions); RegisterClassificationSolutionsEventHandler(); } public ClassificationEnsembleSolution() : base(new ClassificationEnsembleModel(), ClassificationEnsembleProblemData.EmptyProblemData) { trainingPartitions = new Dictionary(); testPartitions = new Dictionary(); classificationSolutions = new ItemCollection(); RegisterClassificationSolutionsEventHandler(); } public ClassificationEnsembleSolution(IClassificationProblemData problemData) : this(Enumerable.Empty(), problemData) { } public ClassificationEnsembleSolution(IEnumerable models, IClassificationProblemData problemData) : this(models, problemData, models.Select(m => (IntRange)problemData.TrainingPartition.Clone()), models.Select(m => (IntRange)problemData.TestPartition.Clone()) ) { } public ClassificationEnsembleSolution(IEnumerable models, IClassificationProblemData problemData, IEnumerable trainingPartitions, IEnumerable testPartitions) : base(new ClassificationEnsembleModel(Enumerable.Empty()), new ClassificationEnsembleProblemData(problemData)) { this.trainingPartitions = new Dictionary(); this.testPartitions = new Dictionary(); this.classificationSolutions = new ItemCollection(); List solutions = new List(); var modelEnumerator = models.GetEnumerator(); var trainingPartitionEnumerator = trainingPartitions.GetEnumerator(); var testPartitionEnumerator = testPartitions.GetEnumerator(); while (modelEnumerator.MoveNext() & trainingPartitionEnumerator.MoveNext() & testPartitionEnumerator.MoveNext()) { var p = (IClassificationProblemData)problemData.Clone(); p.TrainingPartition.Start = trainingPartitionEnumerator.Current.Start; p.TrainingPartition.End = trainingPartitionEnumerator.Current.End; p.TestPartition.Start = testPartitionEnumerator.Current.Start; p.TestPartition.End = testPartitionEnumerator.Current.End; solutions.Add(modelEnumerator.Current.CreateClassificationSolution(p)); } if (modelEnumerator.MoveNext() | trainingPartitionEnumerator.MoveNext() | testPartitionEnumerator.MoveNext()) { throw new ArgumentException(); } trainingEvaluationCache = new Dictionary(problemData.TrainingIndices.Count()); testEvaluationCache = new Dictionary(problemData.TestIndices.Count()); RegisterClassificationSolutionsEventHandler(); classificationSolutions.AddRange(solutions); } public override IDeepCloneable Clone(Cloner cloner) { return new ClassificationEnsembleSolution(this, cloner); } private void RegisterClassificationSolutionsEventHandler() { classificationSolutions.ItemsAdded += new CollectionItemsChangedEventHandler(classificationSolutions_ItemsAdded); classificationSolutions.ItemsRemoved += new CollectionItemsChangedEventHandler(classificationSolutions_ItemsRemoved); classificationSolutions.CollectionReset += new CollectionItemsChangedEventHandler(classificationSolutions_CollectionReset); } #region Evaluation public override IEnumerable EstimatedClassValues { get { return GetEstimatedClassValues(Enumerable.Range(0, ProblemData.Dataset.Rows)); } } public override IEnumerable EstimatedTrainingClassValues { get { var rows = ProblemData.TrainingIndices; var rowsToEvaluate = rows.Except(trainingEvaluationCache.Keys); var rowsEnumerator = rowsToEvaluate.GetEnumerator(); var valuesEnumerator = GetEstimatedValues(rowsToEvaluate, (r, m) => RowIsTrainingForModel(r, m) && !RowIsTestForModel(r, m)).GetEnumerator(); while (rowsEnumerator.MoveNext() & valuesEnumerator.MoveNext()) { trainingEvaluationCache.Add(rowsEnumerator.Current, valuesEnumerator.Current); } return rows.Select(row => trainingEvaluationCache[row]); } } public override IEnumerable EstimatedTestClassValues { get { var rows = ProblemData.TestIndices; var rowsToEvaluate = rows.Except(testEvaluationCache.Keys); var rowsEnumerator = rowsToEvaluate.GetEnumerator(); var valuesEnumerator = GetEstimatedValues(rowsToEvaluate, RowIsTestForModel).GetEnumerator(); while (rowsEnumerator.MoveNext() & valuesEnumerator.MoveNext()) { testEvaluationCache.Add(rowsEnumerator.Current, valuesEnumerator.Current); } return rows.Select(row => testEvaluationCache[row]); } } private IEnumerable GetEstimatedValues(IEnumerable rows, Func modelSelectionPredicate) { var estimatedValuesEnumerators = (from model in Model.Models select new { Model = model, EstimatedValuesEnumerator = model.GetEstimatedClassValues(ProblemData.Dataset, rows).GetEnumerator() }) .ToList(); var rowsEnumerator = rows.GetEnumerator(); // aggregate to make sure that MoveNext is called for all enumerators while (rowsEnumerator.MoveNext() & estimatedValuesEnumerators.Select(en => en.EstimatedValuesEnumerator.MoveNext()).Aggregate(true, (acc, b) => acc & b)) { int currentRow = rowsEnumerator.Current; var selectedEnumerators = from pair in estimatedValuesEnumerators where modelSelectionPredicate(currentRow, pair.Model) select pair.EstimatedValuesEnumerator; yield return AggregateEstimatedClassValues(selectedEnumerators.Select(x => x.Current)); } } private bool RowIsTrainingForModel(int currentRow, IClassificationModel model) { return trainingPartitions == null || !trainingPartitions.ContainsKey(model) || (trainingPartitions[model].Start <= currentRow && currentRow < trainingPartitions[model].End); } private bool RowIsTestForModel(int currentRow, IClassificationModel model) { return testPartitions == null || !testPartitions.ContainsKey(model) || (testPartitions[model].Start <= currentRow && currentRow < testPartitions[model].End); } public override IEnumerable GetEstimatedClassValues(IEnumerable rows) { var rowsToEvaluate = rows.Except(evaluationCache.Keys); var rowsEnumerator = rowsToEvaluate.GetEnumerator(); var valuesEnumerator = (from xs in GetEstimatedClassValueVectors(ProblemData.Dataset, rowsToEvaluate) select AggregateEstimatedClassValues(xs)) .GetEnumerator(); while (rowsEnumerator.MoveNext() & valuesEnumerator.MoveNext()) { evaluationCache.Add(rowsEnumerator.Current, valuesEnumerator.Current); } return rows.Select(row => evaluationCache[row]); } public IEnumerable> GetEstimatedClassValueVectors(IDataset dataset, IEnumerable rows) { if (!Model.Models.Any()) yield break; var estimatedValuesEnumerators = (from model in Model.Models select model.GetEstimatedClassValues(dataset, rows).GetEnumerator()) .ToList(); while (estimatedValuesEnumerators.All(en => en.MoveNext())) { yield return from enumerator in estimatedValuesEnumerators select enumerator.Current; } } private double AggregateEstimatedClassValues(IEnumerable estimatedClassValues) { return estimatedClassValues .GroupBy(x => x) .OrderBy(g => -g.Count()) .Select(g => g.Key) .DefaultIfEmpty(double.NaN) .First(); } #endregion protected override void OnProblemDataChanged() { trainingEvaluationCache.Clear(); testEvaluationCache.Clear(); evaluationCache.Clear(); IClassificationProblemData problemData = new ClassificationProblemData(ProblemData.Dataset, ProblemData.AllowedInputVariables, ProblemData.TargetVariable); problemData.TrainingPartition.Start = ProblemData.TrainingPartition.Start; problemData.TrainingPartition.End = ProblemData.TrainingPartition.End; problemData.TestPartition.Start = ProblemData.TestPartition.Start; problemData.TestPartition.End = ProblemData.TestPartition.End; foreach (var solution in ClassificationSolutions) { if (solution is ClassificationEnsembleSolution) solution.ProblemData = ProblemData; else solution.ProblemData = problemData; } foreach (var trainingPartition in trainingPartitions.Values) { trainingPartition.Start = ProblemData.TrainingPartition.Start; trainingPartition.End = ProblemData.TrainingPartition.End; } foreach (var testPartition in testPartitions.Values) { testPartition.Start = ProblemData.TestPartition.Start; testPartition.End = ProblemData.TestPartition.End; } base.OnProblemDataChanged(); } public void AddClassificationSolutions(IEnumerable solutions) { classificationSolutions.AddRange(solutions); trainingEvaluationCache.Clear(); testEvaluationCache.Clear(); evaluationCache.Clear(); } public void RemoveClassificationSolutions(IEnumerable solutions) { classificationSolutions.RemoveRange(solutions); trainingEvaluationCache.Clear(); testEvaluationCache.Clear(); evaluationCache.Clear(); } private void classificationSolutions_ItemsAdded(object sender, CollectionItemsChangedEventArgs e) { foreach (var solution in e.Items) AddClassificationSolution(solution); RecalculateResults(); } private void classificationSolutions_ItemsRemoved(object sender, CollectionItemsChangedEventArgs e) { foreach (var solution in e.Items) RemoveClassificationSolution(solution); RecalculateResults(); } private void classificationSolutions_CollectionReset(object sender, CollectionItemsChangedEventArgs e) { foreach (var solution in e.OldItems) RemoveClassificationSolution(solution); foreach (var solution in e.Items) AddClassificationSolution(solution); RecalculateResults(); } private void AddClassificationSolution(IClassificationSolution solution) { if (Model.Models.Contains(solution.Model)) throw new ArgumentException(); Model.Add(solution.Model); trainingPartitions[solution.Model] = solution.ProblemData.TrainingPartition; testPartitions[solution.Model] = solution.ProblemData.TestPartition; trainingEvaluationCache.Clear(); testEvaluationCache.Clear(); evaluationCache.Clear(); } private void RemoveClassificationSolution(IClassificationSolution solution) { if (!Model.Models.Contains(solution.Model)) throw new ArgumentException(); Model.Remove(solution.Model); trainingPartitions.Remove(solution.Model); testPartitions.Remove(solution.Model); trainingEvaluationCache.Clear(); testEvaluationCache.Clear(); evaluationCache.Clear(); } } }