#region License Information
/* HeuristicLab
* Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Linq;
using System.Windows.Forms;
using HeuristicLab.Algorithms.DataAnalysis;
using HeuristicLab.MainForm;
using HeuristicLab.Problems.DataAnalysis.Views;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression.Views {
[View("Error Characteristics Curve")]
[Content(typeof(ISymbolicRegressionSolution))]
public partial class SymbolicRegressionSolutionErrorCharacteristicsCurveView : RegressionSolutionErrorCharacteristicsCurveView {
private IRegressionSolution linearRegressionSolution;
public SymbolicRegressionSolutionErrorCharacteristicsCurveView() {
InitializeComponent();
}
public new ISymbolicRegressionSolution Content {
get { return (ISymbolicRegressionSolution)base.Content; }
set { base.Content = value; }
}
protected override void OnContentChanged() {
if (Content != null)
linearRegressionSolution = CreateLinearRegressionSolution();
else
linearRegressionSolution = null;
base.OnContentChanged();
}
protected override void UpdateChart() {
base.UpdateChart();
if (Content == null || linearRegressionSolution == null) return;
AddRegressionSolution(linearRegressionSolution);
}
private IRegressionSolution CreateLinearRegressionSolution() {
if (Content == null) throw new InvalidOperationException();
double rmse, cvRmsError;
var problemData = (IRegressionProblemData)ProblemData.Clone();
if(!problemData.TrainingIndices.Any()) return null; // don't create an LR model if the problem does not have a training set (e.g. loaded into an existing model)
//clear checked inputVariables
foreach (var inputVariable in problemData.InputVariables.CheckedItems) {
problemData.InputVariables.SetItemCheckedState(inputVariable.Value, false);
}
//check inputVariables used in the symbolic regression model
var usedVariables =
Content.Model.SymbolicExpressionTree.IterateNodesPostfix().OfType().Select(
node => node.VariableName).Distinct();
foreach (var variable in usedVariables) {
problemData.InputVariables.SetItemCheckedState(
problemData.InputVariables.First(x => x.Value == variable), true);
}
var solution = LinearRegression.CreateLinearRegressionSolution(problemData, out rmse, out cvRmsError);
solution.Name = "Linear Model";
return solution;
}
protected override void Content_ModelChanged(object sender, EventArgs e) {
linearRegressionSolution = CreateLinearRegressionSolution();
base.Content_ModelChanged(sender, e);
}
protected override void Content_ProblemDataChanged(object sender, EventArgs e) {
linearRegressionSolution = CreateLinearRegressionSolution();
base.Content_ProblemDataChanged(sender, e);
}
}
}